## Accepted Manuscript

#### Review

Genetic modification: A tool for enhancing beta-glucosidase production for biofuel application

Reeta Rani Singhania, Anil Patel, Ashok Pandey, Edgard Gnasounou

| PII:           | S0960-8524(17)30794-0                            |
|----------------|--------------------------------------------------|
| DOI:           | http://dx.doi.org/10.1016/j.biortech.2017.05.126 |
| Reference:     | BITE 18152                                       |
| To appear in:  | Bioresource Technology                           |
| Received Date: | 28 March 2017                                    |
| Revised Date:  | 17 May 2017                                      |
| Accepted Date: | 19 May 2017                                      |



Please cite this article as: Singhania, R.R., Patel, A., Pandey, A., Gnasounou, E., Genetic modification: A tool for enhancing beta-glucosidase production for biofuel application, *Bioresource Technology* (2017), doi: http://dx.doi.org/10.1016/j.biortech.2017.05.126

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

# ACCEPTED MANUSCRIPT

### Genetic modification: A tool for enhancing beta-glucosidase production for

## biofuel application

Reeta Rani Singhania<sup>1</sup>, Anil Patel<sup>2</sup>\*, Ashok Pandey<sup>3</sup> & Edgard Gnasounou<sup>4</sup>

<sup>1</sup>DBT-IOC Advanced Bio-Energy Research Centre, Indian Oil Corporation; R&D Centre,

Sector-13, Faridabad-121007, India

<sup>2</sup>Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa,

Honolulu 96822 HI, United States

<sup>3</sup>Center of Innovative and Applied Bioprocessing, C-127, IInd Floor, Phase 8, Industrial Area,

S.A.S Nagar, Mohali, Punjab-160071, India

<sup>4</sup>Bioenergy and Energy Planning Research Group, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

\*Corresponding author Email: anilkpatel22@gmail.com, patelani@hawaii.edu

#### Abstract

Beta-glucosidase (BGL) is a rate-limiting enzyme for cellulose hydrolysis as it acts in the final step of lignocellulosic biomass conversion to convert cellobiose into glucose, the final end product. Most of the fungal strains used for cellulase production are deficient in BGL hence BGL is supplemented into cellulases to have an efficient biomass conversion. Genetic engineering has enabled strain modification to produce BGL optimally with desired properties to be employed for biofuel applications. It has been cloned either directly into the host strains lacking BGL or into another expression system, to be overexpressed so as to be blended into BGL deficient

Download English Version:

# https://daneshyari.com/en/article/7069387

Download Persian Version:

https://daneshyari.com/article/7069387

Daneshyari.com