Accepted Manuscript

Review

Microbial Phytase: Impact of advances in genetic engineering in revolutionizing its properties and applications

Mrudula Vasudevan Ushasree, Krishna Shyam, Jalaja Vidya, Ashok Pandey

PII:	S0960-8524(17)30714-9
DOI:	http://dx.doi.org/10.1016/j.biortech.2017.05.060
Reference:	BITE 18086
To appear in:	Bioresource Technology
Received Date:	22 March 2017
Revised Date:	8 May 2017
Accepted Date:	10 May 2017

Please cite this article as: Ushasree, M.V., Shyam, K., Vidya, J., Pandey, A., Microbial Phytase: Impact of advances in genetic engineering in revolutionizing its properties and applications, *Bioresource Technology* (2017), doi: http://dx.doi.org/10.1016/j.biortech.2017.05.060

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Microbial Phytase: Impact of advances in genetic engineering in revolutionizing its properties and applications

¹Mrudula Vasudevan Ushasree*, ²Krishna Shyam, ¹Jalaja Vidya and Ashok

Pandey

¹Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum-695 019, Kerala, India

²Malabar Institute of Medical Science Research Foundation, Calicut-673 007, Kerala, India

³ Center of Innovative and Applied Bioprocessing, Mohali-160 071, Punjab, India

Email: <u>ushusbt@gmail.com(UMV); shyambio@gmail.com(SK);</u> <u>vidyabt@gmail.com(VJ); pandey@ciab.res.in; ashokpandey1956@gmail.com</u> (APandey)

Key words: Phytase, genetic engineering, genome mining, PCR, heterologous expression

ABSTRACT

Phytases are enzymes that increase the availability of phosphorous in monogastric diet and reduces the anti-nutrition effect of phytate. This review highlights contributions of recombinant technology to phytase research during the last decade with specific emphasis on new generation phytases. Application of modern molecular tools and genetic engineering have aided the discovery of novel phytase genes, facilitated its commercial production and expanded its applications. In future, by adopting most recent gene improvement techniques, more efficient next generation phytases can be developed for specific applications.

1. Introduction

Invention of phytase in 1907 is considered as one of the most important landmark discoveries in the feed industry during the past century (Cromwell, 2009). Since then, science and technology advances led this versatile enzyme to establish as a predominant

Download English Version:

https://daneshyari.com/en/article/7069550

Download Persian Version:

https://daneshyari.com/article/7069550

Daneshyari.com