Accepted Manuscript

pH-dependent ammonia removal pathways in microbial fuel cell system

Taeyoung Kim, Junyeong An, Hyeryeong Lee, Jae Kyung Jang, In Seop Chang

PII: S0960-8524(16)30470-9

DOI: http://dx.doi.org/10.1016/j.biortech.2016.03.167

Reference: BITE 16357

To appear in: Bioresource Technology

Received Date: 31 January 2016 Revised Date: 30 March 2016 Accepted Date: 31 March 2016

Please cite this article as: Kim, T., An, J., Lee, H., Jang, J.K., Chang, I.S., pH-dependent ammonia removal pathways in microbial fuel cell system, *Bioresource Technology* (2016), doi: http://dx.doi.org/10.1016/j.biortech.2016.03.167

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1	pH-dependent ammonia removal pathways in microbial fuel cell system
2	
3	Taeyoung Kim ^a , Junyeong An ^a , Hyeryeong Lee ^a , Jae Kyung Jang ^b , In Seop Chang ^{a,*}
4	
5	^a School of Environmental Science and Engineering, Gwangju Institute of Science and
6	Technology (GIST), Gwangju 61005, Republic of Korea
7	^b Energy and Environmental Engineering Division, National Institute of Agricultural
8 9	Science, Rural Development Administration, Jeonju-si 54875, Republic of Korea
10	* Corresponding author
11	Tel.: +82-62-715-3278; Fax: +82-62-715-2434; E-mail: ischang@gist.ac.kr (I.S. Chang)
12	
13	Abstract
14	In this work, ammonia removal paths in microbial fuel cells (MFCs) under different initial
15	pH conditions (pH 7.0, 8.0, and 8.6) were investigated. At a neutral pH condition (pH 7.0),
16	MFC used an electrical energy of 27.4% and removed 23.3% (30.2 mg/L) of total ammonia
17	by electrochemical pathway for 192 h. At the identical pH condition, 36.1% of the total
18	ammonia was also removed by the biological path suspected to be biological ammonia
19	oxidation process (e.g., Anammox). With the initial pH increased, the electrochemical
20	removal efficiency decreased to less than 5.0%, while the biological removal efficiency
21	highly increased to 61.8%. In this study, a neutral pH should be maintained in the anode to
22	utilize MFCs for ammonia recovery via electrochemical pathways from wastewater stream.
23	
24	Keywords: microbial fuel cell; ammonia removal; ammonia recovery; <i>Anammox</i> ; pH
25	

Download English Version:

https://daneshyari.com/en/article/7070926

Download Persian Version:

https://daneshyari.com/article/7070926

Daneshyari.com