Accepted Manuscript

Methane enhancement through oxidative cleavage and alkali solubilisation pretreatments for corn stover with anaerobic activated sludge

Muhammad Hassan, Weimin Ding, Jinhua Bi, Esmaeil Mehryar, Zahir Ahmed Ali Talha, Hongying Huang

PII: S0960-8524(15)01398-X

DOI: http://dx.doi.org/10.1016/j.biortech.2015.09.115

Reference: BITE 15628

To appear in: Bioresource Technology

Received Date: 13 August 2015 Revised Date: 27 September 2015 Accepted Date: 29 September 2015

Please cite this article as: Hassan, M., Ding, W., Bi, J., Mehryar, E., Talha, Z.A.A., Huang, H., Methane enhancement through oxidative cleavage and alkali solubilisation pre-treatments for corn stover with anaerobic activated sludge, *Bioresource Technology* (2015), doi: http://dx.doi.org/10.1016/j.biortech.2015.09.115

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Methane enhancement through oxidative cleavage and alkali solubilisation pre-treatments for corn stover with anaerobic activated sludge

Muhammad Hassan ^a, Weimin Ding ^{a, *}, Jinhua Bi ^b, Esmaeil Mehryar ^a, Zahir Ahmed Ali Talha ^a, Hongying Huang ^b

^a College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210031, China

^b Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Science, Nanjing, Jiangsu 210014, China

Abstract

In the present study, thermo-chemical pre-treatment was adopted to evaluate methane production potential from corn stover by co-digesting it with anaerobic activated sludge. Three chemicals H_2O_2 , $Ca(OH)_2$ and NaOH were selected with two levels of concentration. All thermo-chemical pre-treatments were found significant (P<0.05) to enhance lignocellulosic digestibility and methane production. The results indicated that the methane yield by H_2O_2 -1, H_2O_2 -2, and NaOH-2 treated corn stover were 293.52, 310.50 and 279.42 ml/g.VS which were 57.18%, 66.27% and 49.63% higher than the untreated corn stover respectively. In the previous studies pre-treatment time was reported in days but our method had reduced it to about one hour. H_2O_2 -2 and NaOH-2 treatments remained prominent to increase lignocellulosic degradation vigorously up to

^{*}Corresponding author. Tel +86-25 5860 6502, E-mail address: wmding@njau.edu.cn

Download English Version:

https://daneshyari.com/en/article/7072835

Download Persian Version:

https://daneshyari.com/article/7072835

Daneshyari.com