Accepted Manuscript

Potential of biohydrogen production from organic fraction of municipal solid waste (OFMSW) using pilot-scale dry anaerobic reactor

M. Elsamadony, A. Tawfik

PII: S0960-8524(15)01010-X

DOI: http://dx.doi.org/10.1016/j.biortech.2015.07.048

Reference: BITE 15281

To appear in: Bioresource Technology

Received Date: 12 June 2015 Revised Date: 15 July 2015 Accepted Date: 16 July 2015

Please cite this article as: Elsamadony, M., Tawfik, A., Potential of biohydrogen production from organic fraction of municipal solid waste (OFMSW) using pilot-scale dry anaerobic reactor, *Bioresource Technology* (2015), doi: http://dx.doi.org/10.1016/j.biortech.2015.07.048

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Potential of biohydrogen production from organic fraction of municipal solid waste (OFMSW) using pilot-scale dry anaerobic reactor

M. Elsamadony*, and A. Tawfik

Egypt-Japan University of Science and Technology (E-Just), Environmental

Engineering Department, P.O. Box 179, New Borg El Arab City, 21934 Alexandria,

Egypt

Abstract

A long-term evaluation of a mesophilic up-flow intermittently stirred tank reactor (UISTR) for hydrogen production from the organic fraction of municipal solid waste was investigated. UISTR was operated at five different hydraulic retention times (HRTs) of 10, 7.5, 5, 3 and 2 days. This corresponds to organic loading rates (OLRs) of 18.1, 26.2, 41.3, 61.0, and 97.2 $g_{COD}/L/day$, respectively. The highest volumetric H_2 production of 2.20 \pm 0.19 L/L/d and H_2 yield of 2.05 \pm 0.33 $mol_{H2}/mol_{Carbohydrate}$ were achieved at HRT of 3 days and OLR of 61.0 $g_{COD}/L/day$. This revealed a higher sCOD/tCOD ratio of 0.46 \pm 0.08 and a lower particle size diameter of 307.6 μ m in the digestate, with a reduction of 72.0%. The maximum carbohydrates, proteins, and lipids conversions amounted to 68.2 \pm 13.0%, 37.5 \pm 6.7% and 48.6 \pm 4 .7%, respectively recorded at HRT of 10 days and OLR of 18.1 $g_{COD}/L/day$.

Keywords: Dry anaerobic digestion; Organic fractions of municipal solid waste; Upflow intermittently stirred tank reactor; Particle size distribution

1. Introduction

Fossil fuels still dominate energy consumption (approximately 86%), as well as being the major source of greenhouse gas (GHG), which results in environmental problems,

^{*} Corresponding author: +2-03-4599520; mohamed.elsamadoney@ejust.edu.eg, and m_elsamadoney@yahoo.com

Download English Version:

https://daneshyari.com/en/article/7073655

Download Persian Version:

https://daneshyari.com/article/7073655

<u>Daneshyari.com</u>