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a b s t r a c t

Some problems of Calculus of Variations do not have solutions in the class of classic continuous and
smooth arcs. This suggests the need of a relaxation or extension of the problem ensuring the existence of
a solution in some enlarged class of arcs. This work aims at the development of an extension for a more
general optimal control problem with nonlinear control dynamics in which the control function takes
values in some closed, but not necessarily bounded, set. To achieve this goal, we exploit the approach of
R.V. Gamkrelidze based on the generalized controls, but related to discontinuous arcs. This leads to the
notion of generalized impulsive control. The proposed extension links various approaches on the issue of
extension found in the literature.

& 2014 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that variational calculus problems may not
have a smooth or even continuous solution. Nevertheless, dis-
continuous solutions may still be of interest from the physical
point of view. Consider the following famous Euler example

Minimize
Z 1

0
xðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð _xÞ2

q
dt;

subject to xð0Þ ¼ r1; xð1Þ ¼ r2;

xðtÞZ0: ð1Þ
This is the so-called minimal surface problem. Physically, the
solution x( � ) is the shape of a soap bubble or a membrane
stretched over two parallel disks with radiuses r1 and r2. The
application of the Euler–Lagrange principle leads to a second order
differential equation and to a boundary-value problem, which does
not have solutions for certain values of r1, r2. The physical meaning
is as follows: if numbers r1, r2 are sufficiently large relatively to the
distance between the disks, the membrane exists and the surface
of revolution is smooth. But, if we increase the distance between
the disks, the soap bubble stretches and, at some point, blows up.
At that very moment, the smooth and continuous solution fails
to exist. However, it does not mean that a solution x( � ) does not

exist at all. In this degenerate case, the solution is xð0Þ ¼ r1,
xð1Þ ¼ r2, xðtÞ ¼ 0, tA ð0;1Þ, and, thus, it exhibits discontinuities.

Consider another famous example, the Dido problem.

Maximize
Z 1

0
xðtÞ dt;

subject to xð0Þ ¼ xð1Þ ¼ 0; xðtÞZ0;Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð _xÞ2

q
dt ¼ l: ð2Þ

Once again, continuous solution fails to exist when the length
of the arc l is sufficiently large. Dido problem is a typical example
of the so-called isoperimetric problem. The situation in which
there is no solution is fairly common in such kind of problems.

An isoperimetric version of the Euler example is the catenary

Minimize
Z 1

0
xðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð _xÞ2

q
dt;

subject to xð0Þ ¼ r1; xð1Þ ¼ r2; xðtÞZ0;Z 1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þð _xÞ2

q
dt ¼ l: ð3Þ

The equation of the catenary curve was derived by Leibniz,
Huygens and Johann Bernoulli in 1691. They were the first ones
to find out that this curve is a hyperbolic cosine, and not a
parabola as it had been thought before. The shape of the soap
bubble (1) is, as we see from (3), again a catenary, and Euler was
the first one to prove it by using Variational Calculus. Once again,
this problem naturally allows for discontinuous solutions.
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Another simple example of an isoperimetric problem is the one
of minimizing the norm of a function in L1 over the elements of
the unit sphere in L2

Minimize
Z 1

0
j _xj dt;

subject to xð0Þ ¼ 0;
Z 1

0
j _xj2 dt ¼ 1: ð4Þ

The solution does not exist. Indeed the infimum, here, is zero,
but it is not reached due to the integral constraint.

In the framework of his famous program, David Hilbert [18]
suggested (20th problem) to extend the Variational Calculus in
order to cover and to formalize such degenerate situations when
solutions fail to exist, by giving a strict mathematical meaning to
non-smooth and to non-classical solutions as a whole. He
expressed his confidence that every problem in the calculus of
variations has a solution, provided that the term solution is
interpreted appropriately. That spawned a number of theories on
the extension of classic variational calculus by various authors. For
the rich history of this issue, we refer the reader to the article [21],
see also the bibliography therein. Here, we only point out
important contributions made by H. Lebesgue, L. Tonelli, L. Young,
N. Bogolyubov, R. Gamkrelidze, R. Rockafellar, A. Ioffe, V. Tikho-
mirov, and J. Warga, among others (see references in the above
source for an overview).

So, in the realm of this context, the aim of the current research
is to give a strict mathematical meaning to discontinuous solutions
that may arise in the following optimal control problem

Minimize
Z t1

t0
g0ðx; v; tÞ dt;

subject to _x ¼ gðx; v; tÞ; tA ½t0; t1�;
xðt0ÞAA; xðt1ÞAB;

vðtÞAV a:a: tA ½t0; t1�;
φðxðtÞ; tÞr0 8 tA ½t0; t1�; ð5Þ

where g0 : Rn � Rk � R1-R1; g : Rn � Rk � R1-Rn; and φ : Rn �
R1- Rl are given continuous maps, A and B are given closed subsets
of Rn, V is a given closed, not necessarily bounded, subset of Rk and v

( � ) is a control function. The function φ defines the so-called state
constraints.

In what follows, we associate the control problem (5) an a
priori given scalar function ωðξÞ : Rþ-Rþ which is nonnegative,
increasing and continuous. The purpose of introducing this func-
tion is to characterize the growth of the dynamics at infinity.
Simple examples of ωðξÞ are: ξ (linear growth), ξ2 (quadratic
growth), ξp, eξ, etc.

Once ω is chosen, assume that the admissible control function
v(t) in (5) is such that the function ωðjvjÞ is integrable. So, when
wðξÞ ¼ ξ, v is a L1�function, when wðξÞ ¼ ξ2, v is a L2�function, etc.
Thus, the function ωðξÞ determines the class of admissible controls
in (5).

Note that, by setting v¼ _x, all the above examples (1)–(4) fall
within the formulation of (5), with V ¼R.

To achieve the above goal, we exploit the extension approach of
[13], based on generalized controls, by upgrading it to the case of
discontinuous arcs. The case of continuous arcs, however, is still
encompassed. Ultimately, the proposed extension links the
approach developed by Gamkrelidze with the approaches in
[27,28,30], and by some other authors (see [8,20,23]). Moreover,
it also generalizes the extensions from [5,6,19], performed for
control problems whose dynamics are linear in v, with separated
control variables.

Overall, the line of investigation undertaken here is, of course, a
road well traveled, and based on the so-called “graph completion”
or “discontinuous time variable change” technique combined with

the Gamkrelidze compactification, or convexification, technique.
Besides the above-mentioned sources, our main line of research
also goes along the works in [9,10,12,15–17,24,25,29,32]. This list,
though, is far from being complete.

2. Preliminaries

To treat the extension, it is necessary to compactify the space Rk

by adding a set Sk�1
1 , called sphere at infinity. “Sphere at infinity”

means that there is a homeomorphism Π : Sk�1
1 -Sk�1, where Sk�1

is the unit sphere in Rk. The compactified space R
k≔Rk [ Sk�1

1 is
endowed with a natural topology in which any sequence of points
viARk converges to the point lASk�1

1 iff jvij-1 and

vi ¼ jvij � ΠðlÞþoðjvijÞ:
Note that the compact Rk is topologically equivalent to the closed

unit ball BRk in Rk due to the following homeomorphism Θ, defined by

ΘðvÞ ¼ v
1þjvj; vARk;

and ΘðvÞ ¼ΠðvÞ if vASk�1
1 .

Denote

V1≔Π�1 Limsup
jvj-V 1

v
jvj

0
@

1
A:

Here jvj-V 1 means that jvj-1 and vAV .
Now, the set V≔V [ V1 is compact.
Let us introduce our main hypothesis about the right-hand side

g and function g0. Assume that there exists a continuous function

g1 : Rn � Sk�1 � R1-Rn;

such that

lim
v-Π � 1ðeÞ

gðx; v; tÞ
ωðjvjÞ ¼ g1ðx; e; tÞ 8 x; tARn � R1; 8 eASk�1:

Then, there is defined a continuous function g : Rn � R
k � R1-Rn

such that

gðx; v; tÞ ¼ gðx; v; tÞ
1þωðjvjÞ if vARk;

and gðx; v; tÞ ¼ g1ðx;ΠðvÞ; tÞ, if vASk�1
1 .

In a similar way, assume that there exist a function
g10 : Rn � Sk�1 � R1-R1, and a function g0 : Rn � R

k � R1-R1

which are defined just as above but using g0 instead of g.
We shall use the following assumptions.

(H1) Functions g ; and g0 introduced above do exist. Moreover, the
function g is such that

jgðx; v; tÞjrmðtÞκðjxjÞ 8ðx; v; tÞARn � V � R1;

where κ : R1-R1 is such that

κðjxjÞ
1þjxjrconst 8x;

and m is some locally integrable function.
(H2) Functions g ; and g0 are continuously differentiable in x; t for

all vAR
k.

Definition 1. The control problem (5) is said to allow the impulsive
extension of order ω provided the hypothesis (H1) is satisfied and at
least one of the functions g1 or g10 is not a zero function.

It is easy to see that the Euler and Dido problems (1), (2), and
(3) allow extension of linear order ξ whereas the problem (4)
already requires quadratic growth ωðξÞ ¼ ξ2.

Consider a scalar Borel measure μ : BðTÞ-½0; þ1Þ, T ¼ ½t0; t1�.
Here, BðTÞ stands for the σ-algebra of Borel subsets of T.
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