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The paper investigates the response of a closed-loop
sampled-data system S with an finite dimensional linear
continuous periodic (FDLCP) process and pure delay to
a stationary stochastic input. Since the variance of the
quasi-stationary output of the system S is a periodic func-
tion of the time, an advanced form of statistical analysis
is required. The paper introduces the advanced statistical
analysis problem, and its solution is derived on basis of
the parametric transfer matrix (PTM) concept. Moreover,
a characteristic polynomial is defined, which gives neces-
sary and sufficient conditions for the asymptotic stability
of the system S. An example demonstrates the advanced
statistical analysis procedure.
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1. Introduction

One of the actual problems in modern control theory con-
sists in controlling linear periodic (LP) systems of several
types. Most investigations for this class of systems are
devoted to finite dimensional linear continuous periodic
(FDLCP) systems and linear sampled-data (LSD) sys-
tems containing continuous linear time-invariant (LTI)
elements. Various aspects for this class of problems could
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be find in the broadly based literature, e.g., [2]–[33],
[36]–[44] and the references therein. The analysis of
these contributions shows that, as in the classical theory
of linear time-invariant (LTI) systems, for the math-
ematical description of LP processes and the solution
of control problems for such processes, at present two
approaches have been established—time and frequency
domain approaches. One actual approach in time domain
consists in applying the theory of state space equations
and the lifting technique. The actual state of this method
is described in the monographs [7, 10]. The frequency
approach at the moment develops in two parallel branches.
The first branch is based on the application of infinite
dimensional matrices and determinants [15], [25], [30],
[36, 37], [42–44]. The second approach does not apply
infinite matrices, but it is sustaining on the parametric
transfer matrix (PTM) concept W(s, t) = W(s, t + T),
where T is the period of the system. In addition to the
complex variable s, the PTM W(s, t) depends on the time t
as a parameter. The mathematical foundation of the PTM
theory for FDLCP systems and the technique for its appli-
cation is argued in [18, 19, 27], and analogue questions for
LSD systems have been investigated in [28, 29].

One of the fundamental problems in the theory of
LP Systems consists in their behavior, when stationary
stochastic signals act on the input. The statement and solu-
tion of this problem for LP systems are essentially different
from the analogue problem for LTI systems. The reason
for that the stationary response of an asymptotically stable
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LP system with period T to a stationary stochastic input
is a periodically non-stationary stochastic process, an its
variance d(t) is a periodic function with period T , i.e.,
d(t) = d(t + T). As examples show [23, 28], the varia-
tion of the variance inside the period can be considerable.
Therefore, the value of the mean variance

d = 1

T

T∫
0

d(t) dt

alone does not give an adequate information about the
correct operation of a system in the quasi-stationary mode.
This statement is also valid for the H2 norm ‖S‖2 of the
system S, which is connected with the mean variance by
the relation

‖S‖2 =
√

d.

It follows from the above said that the mean variance or
H2 norm alone, in the general case do not guarantee the
precision demands on the system. Therefore, during the
design of LP systems, the dependence of the variance d(t)
over the complete period has to be studied. The calculation
of the H2 norm alone is not sufficient. In the paper below,
the calculation problem for the variance d(t) is called the
advanced statistical analysis (ASA) problem.

An appropriate instrument for the solution of the ASA
problem for several classes of LP systems is the PTM
method. The key consists in the integral formula

d(t) = 1

2π j

j∞∫
−j∞

trace
[
W ′(−s, t)W(s, t)

]
ds.

In [18, 19, 27], this formula was applied to FDLCP sys-
tems. Analogue results for LSD systems can be found
in [28, 29]. For practical applications the above integral
formula can be divided into several partial problem:

a) Construct the PTM for an LTP system of given type.
b) Study the properties of the PTM W(s, t) as a function

of the arguments s and t.
c) Prepare computation methods for the corresponding

integrals.

For FDLCP and LSD systems, these programs have been
realised in [19, 23, 28, 29].

An essential generalization of the PTM method is its
extension to LSD systems including FDLCP elements.
This system class is of exceeding practical and theoretical
interest. However, this problem is studied occasionally,
and only few papers have been published. In particu-
lar, the papers [18, 21, 22] consider the stabilization of
such systems. In [23] the ASA problem of a single-loop

Fig. 1. Digital controlled periodic process with delay.

sampled-data system with an FDLCP process is con-
structed. The present paper extends the method in [23]
to the case, where the system has additional pure delays
at the input or output of the digital controller. This prob-
lem formulation is more realistic and allows to take into
account the computational delay, which always happens
in sampled-data systems.

2. System Description and Problem

The paper considers the system S with the structure shown
in Fig. 1. In Fig. 1 the small letters denote vector sig-
nals with the following dimensions: x0 − l × 1, x, f , y1,
y − n × 1, u, u1 − m × 1. Furthermore, G is an LTI filter
with the strictly proper transfer matrix G(s) of size n × l,
where all its poles are located in the open left halfplane.
Moreover, τ1 and τ2 are nonnegative constants, charac-
terizing the pure delay in different parts of the control
loop.

The block P in Fig. 1 denotes the FDLCP process, which
is described by the state equation

dv(t)

dt
= A(t)v(t) + B(t)u(t) (1)

and the output equation

y1(t) = C(t)v(t), (2)

where v(t) is the p × 1 state vector, and A(t) = A(t + T),
B(t) = B(t+T), C(t) = C(t+T) are continuous matrices
of the dimensions p × p, p × m, and n × p, respectively.

Denote by H(t) the p×p Cauchy matrix of equation (1),
satisfying the matrix equation

dH(t)

dt
= A(t)H(t), H(0) = Ip,

where Ip is the p × p identity matrix. Traditionally, see
e.g., [38], the matrix

M = H(T)

is called the monodromy matrix of equation (1). As known
[38], for any integer k

H(t + kT) = H(t)Mk , H−1(t + kT) = M−kH−1(t).

In particular, we have

H−1(t − T) = MH−1(t). (3)
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