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a b s t r a c t

This paper is concerned with the computation of basis matrices for the subspaces that lie at the core of
the so-called geometric approach to control theory, namely the supremal output-nulling, reachability
and stabilisability subspaces. Importantly, we also consider the problem of computing the feedback
matrices that render these subspaces invariant with respect to the closed loop, while simultaneously
assigning the assignable eigenstructure of the closed loop. Differently from the classical techniques
presented in the literature so far on this topic, which are based on the standard pole assignment
algorithms and are therefore applicable only in the non-defective case, the method presented in this
paper can be applied in the case of closed-loop eigenvalues with arbitrary multiplicity.

& 2015 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In the last 40 years, geometric control has played a funda-
mental role in the understanding of the structural properties of
dynamical systems and in the solution of several control and
estimation problems, including disturbance decoupling, non-
interacting control, fault detection, model matching and optimal
control to name a few. The monographs [19,4,18,6] provide
surveys of the extensive literature in this area.

The subspaces that underpin the classic geometric theory of
linear time-invariant (LTI) systems are the so-called controlled
invariant and output-nulling subspaces (and their duals). The most
important output-nulling subspace is undoubtedly V⋆, which
represents the set of initial states for which a control function
exists that maintains the output function identically at zero; the
second is R⋆, which represents the reachable subspace within V⋆

when the output is constrained to be identically zero. Finally, the
subspace V⋆

g represents the set of initial states for which a control
can be found that maintains the output at zero by means of state
trajectories that have dynamics belonging to a “good” region of the
complex plane. In the LTI case, the input functions that maintain
the state trajectory on output-nulling subspaces and the output at

zero can always be expressed as a static state feedback, by means
of a feedback matrix usually referred to as a friend of the output-
nulling subspace.1

The computation of friends of output-nulling subspaces that
assign the inner and outer assignable spectrum of the closed-loop
has been considered by many authors and the texts [4,6] included
publicly available MATLABs toolboxes. In the MATLABs GA tool-
box,2 the effesta.m routine is used for computing the friends.
Similarly, the special coordinate basis method of [6] was incorpo-
rated into the computation of the friends in the MATLABs Linsyskit
toolbox3; the atea.m routine is used for computing the friends,
and is described in [9].

All the methods currently available in the literature are based
on decompositions that reduce the problem to one where a
feedback matrix F is sought that assigns all the eigenvalues of a
closed-loop matrix, say AþBF , where the pair ðA;BÞ is completely
reachable. Both the methods in the MATLABs toolboxes GA and
Linsyskit exploit the MATLABs instruction place.m to this pur-
pose, based on the algorithm of [7], which can only assign
eigenvalues of AþBF with a multiplicity that must not exceed
the rank of B (which correspond to a trivial – i.e., diagonal – Jordan
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1 This property does not necessarily hold outside the framework of finite
dimensional LTI systems over a field.

2 The MATLABs geometric approach (GA) toolbox is available at http://www3.
deis.unibo.it/Staff/FullProf/GiovanniMarro/geometric.htm.

3 The Linear System Toolkit is available on request from the first author of [6];
see http://vlab.ee.nus.edu.sg/�bmchen.
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form for the closed loop). This limitation of the routine place.m is
thus inherited by the MATLABs instructions of the toolboxes GA
and Linsyskit, which can therefore compute the friend of output-
nulling subspaces V⋆, R⋆ and V⋆

g only in the case of non-defective
closed-loop.

The same limitation is found in the method in [11], where an
algorithm is presented for the computation of bases for R⋆ and V⋆

based on the computation of the null-spaces of the system
Rosenbrock matrix pencil [14]. This procedure has the advantage
of simultaneously delivering, as a by-product, a corresponding
friend F that assigns a certain inner closed-loop eigenstructure. In
[12,13] the method was extended to include the computation of a
friend that also assigns the free outer eigenstructure of R⋆ (or V⋆).

One of the restrictive assumptions of the method proposed in
[11], which remains in the generalisations presented in [12,13], is the
fact that the closed-loop eigenvalues to be assigned must be distinct.
The first contribution of the current paper is to extend the method in
[11] to accommodate the problem of assigning repeated closed-loop
eigenvalues, with arbitrary multiplicity. This task is accomplished by
introducing a new parameterisation of the basis matrices for R⋆, V⋆

and V⋆
g , and this provides a natural method for determining the

associated friend which can place the assignable closed-loop eigen-
values to desired locations virtually without any assumptions on the
location or on the multiplicity of such eigenvalues.

However, the most important aspect of the method presented in
[11], which has remained unexploited until very recent times, is the
fact that the friend of R⋆ (or V⋆, or V⋆

g ) that assigns the free inner
and outer eigenstructure of the closed-loop with respect to R⋆ is
given in parameterised form. This fundamental aspect invites the
formulation of optimisation problems aimed at exploiting the avail-
able freedom to deal with performance objectives. The robust exact
pole placement problem [15] involves obtaining a state feedback
matrix F that assigns a desired set of closed-loop eigenvalues while
also rendering them as insensitive to perturbations in A, B, C, D and F
as possible. The minimum gain exact pole placement problem [15]
involves assigning a desired set of closed-loop eigenvalues with the
friend that has the least matrix norm (gain). For systems without
outputs, there has been considerable literature on these problems.
Papers considering the robust exact pole placement problem for the
case of a possibly defective eigenstructure include [8,1,16]. For the
minimum gain exact pole placement problem, [3,16] considered the
general problem of assigning any desired set of poles with any
desired multiplicities with minimum Frobenius gain.

However, as these papers considered systems without output
components, the methods are not applicable to the optimal
computation of friends of controlled invariant subspaces. The
papers [12,13] were the first to propose a method for computing
friends that yield a robust eigenstructure, or have the least gain.
Thus, the second contribution of this paper is the extension of the
methods of [12,13] to accommodate the optimal computation of
friends that assign any desired eigenstructure.

Notation. Throughout this paper, the symbol f0g stands for the
origin of a vector space. For convenience, a linear mapping
between finite-dimensional spaces and a matrix representation
with respect to a particular basis are not distinguished notation-
ally. The image and the kernel of matrix A are denoted by im A and
ker A, respectively. The Moore–Penrose pseudo-inverse of A is
denoted by A†. When A is square, we denote by σðAÞ the spectrum
(i.e., the Jordan structure) of A. Given a linear map A : X⟶Y and a
subspace S of Y, the symbol A�1S stands for the inverse image of
S with respect to the linear map A, i.e., A�1S ¼ fxAX jAxASg. If
J DX , the restriction of the map A to J is denoted by AjJ . If
X ¼ Y and J is A-invariant, the eigenstructure of the map A
restricted to J is denoted by σðAjJ Þ. If J 1 and J 2 are A-invariant
subspaces and J 1DJ 2, the mapping induced by A on the quotient
space J 2=J 1 is denoted by AjJ 2=J 1, and its spectrum is denoted

by σðAjJ 2=J 1Þ. Given a map A : X⟶X and a subspace Y of X , we
denote by 〈A;Y〉 the smallest A-invariant subspace of X containing
Y. The symbol i stands for the imaginary unit, i.e., i¼

ffiffiffiffiffiffiffiffi
�1

p
. The

symbol α denotes the complex conjugate of αAC.

2. Preliminaries

In what follows, whether the underlying system evolves in
continuous or discrete time is irrelevant and, accordingly, the time
index set of any signal is denoted with the symbol T, which
represents either Rþ in the continuous time or N in the discrete
time. The symbol Cg denotes either the open left-half complex plane
C� in the continuous time or the open unit disc C1 in the discrete
time. Consider a linear time-invariant system Σ governed by

Σ :
DxðtÞ ¼ AxðtÞþBuðtÞ; xð0Þ ¼ x0;

yðtÞ ¼ CxðtÞþDuðtÞ;

(
ð1Þ

where, for all tAT, xðtÞAX ¼Rn is the state, uðtÞAU ¼Rm is the
control input, yðtÞAY ¼Rp is the output, and A, B, C and D are
appropriate dimensional constant real-valued matrices. The operator
D denotes either the time derivative in the continuous time, i.e.,
DxðtÞ ¼ _xðtÞ, or the unit time shift in the discrete time, i.e.,
DxðtÞ ¼ xðtþ1Þ. Let the system Σ described by (1) be identified with
the quadruple ðA;B;C;DÞ. We assume with no loss of generality that
all the columns of B

D

� �
and all the rows of ½C D� are linearly

independent.4 We define the Rosenbrock matrix as the matrix pencil:

PΣ ðλÞ ¼def A�λIn B

C D

" #
; ð2Þ

in the indeterminate λAC [14]. The invariant zeros of Σ are
identified with the values of λAC for which the rank of PΣ ðλÞ is
strictly smaller than its normal rank.5 More precisely, the invariant
zeros are the roots of the non-zero polynomials on the principal
diagonal of the Smith form of PΣðλÞ, see [2]. Given an invariant zero
λ¼ zAC, the rank deficiency of PΣ ðλÞ at the value λ¼ z is the
geometric multiplicity of the invariant zero z, and is equal to the
number of elementary divisors (invariant polynomials) of PΣ ðλÞ
associated with the complex frequency λ¼ z. The degree of the
product of the elementary divisors of PΣ ðλÞ corresponding to the
invariant zero z is the algebraic multiplicity of z, see [10]. More
explicitly, denoting the invariant zeros of (2) as z1;…; zη and
denoting the elementary divisors of PΣ ðλÞ by
γkðλÞ ¼ ðλ�z1Þm1;k ðλ�z2Þm2;k⋯ðλ�zηÞmη;k ; kAf1;…; cg; ð3Þ
(where c is the number of elementary divisors) ordered in such away
that mk;cZmk;c�1Z⋯Zmk;2Zmk;1 for any kAf1;…;ηg, the geo-
metric multiplicity of the invariant zero zi equals the number of
mi;ja0 for jAf1;…; cg, while the algebraic multiplicity of zi is equal
to

Pc
k ¼ 1 mi;k. Thus, the algebraic multiplicity of an invariant zero is

not smaller than its geometric multiplicity.
Before introducing the geometric tools that will be needed in

this paper, we recall that if the pair (A,B) is completely reachable
(i.e., the subspace R0 ¼def im½B AB ⋯ An�1B� ¼ 〈A; imB〉 coincides
with X), a feedback matrix FARm�n exists such that all the
eigenvalues of the closed-loop matrix AþBF are freely assignable

4 If B
D

� �
has non-trivial kernel, a subspace U0 of the input space exists that does

not influence the state dynamics. By performing a suitable (orthogonal) change of
basis in the input space, we may eliminate U0 and obtain an equivalent system for
which this condition is satisfied. Likewise, if ½C D� is not surjective, there are some
outputs that result as linear combinations of the remaining ones, and these can be
eliminated using a dual argument by performing a change of coordinates in the
output space.

5 The normal rank of a rational matrix MðλÞ is defined as
normrank MðλÞ ¼defmaxλAC rankMðλÞ. The rank of MðλÞ is equal to its normal rank
for all but finitely many λAC.
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