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a b s t r a c t

Two event-triggered algorithms for digital implementation of a continuous-time stabilizing controller
are proposed in this work. The first algorithm updates the control value in order to keep the time
evolution of a given Lyapunov-like function framed between two auxiliary functions; whereas the second
one actualizes the control value so that the state trajectory of the system stays enclosed between two a
priori defined templates. In both cases, a natural hybrid formulation of the event-based stabilizing
control problem is used to prove the main results of this work. Furthermore, the existence of a minimum
inter-event time greater than zero is proved. Numerical simulations are provided to illustrate the digital
implementation of the event-sampling algorithms for nonlinear systems.

& 2015 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Usually, state feedback control laws applied to dynamical sys-
tems are implemented digitally; and the core idea of this discrete-
time implementation consists in sampling the continuous-time
control law periodically with a sufficiently small sampling period.
However, this procedure may be constrained in practice. On the
one hand, reducing the sampling period to a level that preserves
acceptable performance of the controlled system requires a fairly
powerful and so expensive hardware [8]. On the other hand,
today's systems are complex and compound by several subsystems
controlled by a single CPU. Consequently, reducing the commu-
nication between the CPU and the subsystems is a challenge of
great interest which allows enhancing the ability to control more
complex systems and reducing energy consumption.

To reach this goal, numerous control strategies called event-
based approaches have been proposed in the literature, see [14] for
a recent framework encompassing the most recent existing event-
triggered control techniques. They aim to update the control value
only when a significant event occurs. Usually, this event is defined
as a deviation threshold on the state vector or on the input vector.
In this work, new criteria to design event-triggered sampling
algorithms for a large class of nonlinear systems are proposed

where the control updating decision is based on the dynamical
behavior of auxiliary systems.

The first sampling algorithm updates the control value in order
to guarantee that the Lyapunov-like function of the event-based
system stays framed at each time instant between the Lyapunov
functions of the auxiliary systems. The global stability of the
event-controlled system is guaranteed without requiring the ISS
stability of each subsystem and satisfying a supplementary small
gain condition as needed in [3], where scalar interconnected sys-
tems are considered. The second sampling algorithm is based on a
component by component comparison of the plant state with a
priori defined state templates. In fact, in this case, the control
updating procedure aims to force the state trajectory of the event-
based system to never leave the state enclosure generated by the
auxiliary systems. Moreover, the existence problem of a minimal
inter-event time bigger than zero is solved. This algorithm is
inspired from the design of event-based controllers by using dead-
band methods (see, e.g., [9] for an introduction of this method).
Consider in particular [13] where only single-input-single-output
linear systems are considered. See also recent papers on send-on-
delta control techniques dealing with bandlimited signal as in [2].

A preliminary version of this work focused on the case of linear
systems has been presented in [11].

The paper is organized as follows. In Section 2 preliminary
definitions and notions about hybrid systems, useful to prove our
main contributions, are introduced. The problem under considera-
tion is formulated in Section 3 as stability issue of hybrid systems.
Sections 4 and 5 state the main contributions of this work regarding
the design of event-triggered state feedback controls for nonlinear
systems. Numerical simulations are provided in Section 6 when
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focusing on a nonlinear system borrowed from [3]. Section 7 collects
concluding remarks.

Notation: In this paper the Euclidean inner product of two
vectors x and y will be denoted by x � y, the induced norm will be
denoted by j � j . Given a set A, and a point x, jxjA is the distance of
x relative to A, that is inf zAA jx�zj . int A and A stand respectively
for the interior and the closure of A. Given a vector x in Rn, x>

stands for the transpose of x. The Lie derivative of a function V
with respect to the vector f, i.e., ∇V � f will be denoted by Lf V . The
inequality operators ! ;⪯; g and ≽ between vectors must be
understood component by component, e.g. x!y if and only if xi
oyi for all i where xi and yi are the ith components of x and y
respectively. The i-th vector of the canonical basis is denoted by ei.
A function α : ½0;1Þ-R is of class K if it is zero at zero, continuous
and strictly increasing. It is of class K1 if it is of class K and is
unbounded. A function ρ : ½0;1Þ-R belongs to PD (positive
definite) if it is continuous, ρðsÞ40 for all s40 and zero at zero.

2. Basic notions on hybrid systems

This section is devoted to briefly introduce basic definitions and
notions on hybrid systems [6] needed to prove the main results of
this paper. By definition, hybrid systems are complex dynamical
systems that exhibit both continuous and discrete dynamic
behavior and viewed as a set of ordinary differential equations
(ODE) governed by a finite-state automaton [6]. Mathematically,
these dynamical systems can be described as follows:

_x ¼ f ðxÞ if xAF ;

xþ AgðxÞ if xAJ ;

(
ð1Þ

where xARn stands for the state of (1) with the vector field
f : Rn-Rn. The set-valued mapping g : Rn⇉Rn is the reset func-
tion of (1). The sets F and J are two closed subsets of Rn

respectively called flow and jump sets. Note that, in this work, the
design of the two event-triggered sampling algorithms is based on
the flow and jump sets. We will define these sets later.

So, the hybrid dynamics involve the notion of compact hybrid
time domain (see [6, Definition 2.3]). A set E is a compact hybrid
time domain if

E¼ ⋃
J�1

j ¼ 0
½tj; tjþ1�; j
� �

;

for some finite sequence of times 0¼ t0rt1⋯rtJ . It is a hybrid
time domain if for all ðT ; JÞAE, E \ ½0; T � � f0;1;…Jgð Þ is a compact
hybrid time domain. A solution x to (1) consists of a hybrid time
domain dom x and a function x : dom x-Rn such that xðt; jÞ is
absolutely continuous in t for a fixed j and ðt; jÞAdom x satisfying

(S1) for all jAN and almost all t such that ðt; jÞAdom x,

xðt; jÞAF ; _xðt; jÞ ¼ f ðxðt; jÞÞ;

(S2) for all ðt; jÞAdom x such that ðt; jþ1ÞAdom x,

xðt; jÞAJ ; xðt; jþ1ÞAgðxðt; jÞÞ:

When the state xðt; jÞ belongs to the intersection of the flow set
and of the jump set, then the solution can either flow or jump. Let
us emphasize that the state of (1) should be either in F or in J ,
and there is no solution issuing from Rn⧹ðF [ J Þ.

A solution x to (1) is said to be complete if its domain is
unbounded (either in the t-direction or in the j-direction), Zeno if
it is complete but the projection of dom x onto RZ0 is bounded,
and maximal if there does not exist another solution ~x to (1) such

that x is a truncation of ~x to some proper subset of its domain.
Hereafter, only maximal solutions will be considered.

In the literature (see, e.g., [6, Definition 3.6]), one associates to
the hybrid system (1) the following stability definition.

Definition 1. Let A be a closed subset of Rn and H be the hybrid
system defined in (1). The set A is said to be

� stable for H: if for each ϵ40 there exists δ40 such that each
solution x to H with jxð0;0ÞjArδ satisfies jxðt; jÞjArϵ for all
ðt; jÞAdom x;

� pre-attractive for H: if all complete solutions satisfy
limtþ j-1jxðt; jÞjA ¼ 0;

� globally pre-asymptotically stable for H: if it is both stable and
pre-attractive for H;

� globally asymptotically stable for H: if it is globally pre-
asymptotically stable for H and if each solution to H is
complete.

3. Problem statement

Consider a nonlinear system

_xp ¼ f pðxp;uÞ; ð2Þ
where fp: Rnp � Rm-Rnp is continuously differentiable, xp stands
for the state of the plant and u stands for the control.

Assume that there exists a continuous state feedback control
law u¼ kðxpÞ for which system (2) in closed loop with k is globally
asymptotically stable. Then, the aim of this work is to design
event-based sampling algorithms for the stabilizing state feedback
control u¼ kðxpÞ by combining reachability analysis with stability
analysis of hybrid systems. These sampling algorithms depend on
the state of two auxiliary autonomous systems:

_xa ¼ f aðxaÞ; ð3aÞ

_xb ¼ f bðxbÞ; ð3bÞ
as illustrated in Fig. 1. In (3), f a : R

na-Rna and f b : Rnb-Rnb are
two continuously differentiable functions.

So, the closed-loop system presented in Fig. 1 is more formally
written as a hybrid system H:

H :

_xp ¼ f pðxp; sÞ
_xa ¼ f aðxaÞ
_xb ¼ f bðxbÞ
_s ¼ 0

8>>><
>>>:

; xAF ;

xþ
p Afxpg
xþ
a Akaðxa; xpÞ
xþ
b Akbðxb; xpÞ
sþ AfkðxpÞg

8>>>><
>>>>:

; xAJ ;

ð4Þ

where x¼ ðx>
p ; x>

a ; x>
b ; s> Þ> in Rn stands for the state of this

Fig. 1. Event-based sampling algorithm for the state feedback controller kðxpÞ.
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