
Periodic open-loop stabilization of planar switched systems

Andrea Bacciotti
Dipartimento di Matematica del Politecnico di Torino – C.so Duca degli Abruzzi, 24, 10129 Torino, Italy

a r t i c l e i n f o

Article history:
Received 3 November 2014
Received in revised form
2 September 2015
Accepted 3 September 2015
Recommended by A. Astolfi
Available online 18 September 2015

Keywords:
Stabilization
Switched systems
Periodic switching signals

a b s t r a c t

In the context of the theory of switched systems, and especially of the open-loop stabilization problem, it
is interesting to study the relationship between the placement of the eigenvalues of a matrix of the form
H¼ θ1A1þθ2A2 and those of the matrix E¼ eθ2A2eθ1A1 . It is well known that if all the eigenvalues of H
have negative real part and θ1þθ2 is small enough, then the eigenvalues of E lie in the unit disc of the
complex plane. In this paper we prove that in the two dimensional case a partial converse holds: if the
eigenvalues of E lie in the unit disc of the complex plane for sufficiently small values of θ1þθ2, then there
exist some τ1; τ2 (with, in general, τ1a ¼ θ1; τ2a ¼ θ2) such that the eigenvalues of the matrix τ1A1þ
τ2A2 have negative real part.

& 2015 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction and notation

The problem addressed in this paper deals with the existence of
fast switching, uniform, periodic open-loop stabilizers i.e.,
switching signals periodic of arbitrarily small period, which render
asymptotically stable a given switched system. This is a particular
instance of the asymptotic controllability problem (also called
consistent stabilization) recently studied in [3,10,11]. Here, we
limit ourselves to switched systems composed by pairs of linear
vector fields f 1ðxÞ ¼ A1x, f 2ðxÞ ¼ A2x, where A1;A2 are real d� d
matrices and, for the moment, d is any integer, dZ1. A well know
approach to this problem is based on the examination of the
eigenvalues of the matrix HðαÞ ¼ αA1þð1�αÞA2, αA ½0;1�. In par-
ticular, it is well known that a solution of the problem exists
whenever the following condition is met:

ðHÞ There exists a number αA ½0;1� such that all the eigenvalues of
the matrix HðαÞ have negative real part.

More precisely, a periodic switching signal can be constructed,
under Assumption ðHÞ, according to the following rule:

ðRÞ Let the periodicity interval ½0; T � be divided into two parts,
respectively, proportional to α and 1�α, and let the active
vector field be f1 on the first part, and f2 on the second part of
the interval.

Such a switching signal uniformly “stabilizes” the system in the
sense that the corresponding switched trajectories asymptotically
approach the origin for each initial state, provided that T is small
enough. In fact, under these conditions the convergence of the
switched trajectories is exponential [11].

It is natural to ask the question whether Condition ðHÞ is
necessary, as far as sufficient, for the existence of periodic
switching signals of arbitrarily small period, which stabilize the
system in the aforementioned sense. In this paper we prove that
when d¼ 2, the answer is basically positive but the values of α for
which Condition ðHÞ is fulfilled do not coincide, in general, with
the values of α for which a periodic stabilizing switching signal
can be constructed according to the rule ðRÞ.

Moreover, we show that the construction of periodic open-loop
switching stabilizers of arbitrarily small period can be achieved
also in some critical cases, where a number α can be found in such
a way that all the eigenvalues of HðαÞ have non-positive real parts,
and the real part of at least one eigenvalue of HðαÞ is zero.

A more formal exposition of the problem and of the main result
will be given in Section 2. Section 3 contains the proof, and some
examples are discussed in Section 4. We end this introductionwith
some comments about the role and history of assumption ðHÞ in
the literature.

Condition ðHÞ appears for the first time in a paper by Tokar-
zewski [12], where it is used to construct fast switching, periodic,
open-loop stabilizers for a finite family of linear vector fields
ff nðxÞ ¼ Anx;n¼ 1;…;Ng, according to the rule ðRÞ. Later, Condition
ðHÞ was independently re-proposed by Wicks et al. [14], where
they prove that it implies quadratic stabilization, namely the
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existence of a definite positive, symmetric d� d matrix P such that

8xa ¼ 0 (nAf1;…;Ng such that xtðAt
nPþPAnÞxo0: ð1Þ

Quadratic stabilization leads in turn to the construction of a
closed-loop stabilizer, represented by a discontinuous state-
dependent switching rule. In [14], the authors need to introduce
hysteresis in order to counteract possible chattering phenomena
along the discontinuity set of the switching rule. Alternatively, the
stability could be intended in the sense of Filippov solutions (see
[1] and the so-called min-projection strategy proposed in [9]). This
is basically equivalent to interpret the closed-loop system result-
ing from the application of the discontinuous switching rule as a
differential inclusion. However, resorting to Filippov solutions has
a drawback: indeed in general Filippov solutions cannot be
reproduced by means of time dependent switched signals.

In general, Condition ðHÞ is not necessary for the existence of
discontinuous stabilizing state dependent switching rules (see the
discussion in [1], where it is also given a generalized form of
Condition ðHÞ). On the other hand, it has been proven that if F is
formed by a pair of matrices (i.e., N¼ 2), Condition ðHÞ is actually
necessary for quadratic stabilization [8]. However, in general this
last result does not hold when N42: indeed, in [16] the authors
exhibit an example of a family formed by three 2� 2-matrices
which is quadratically stabilizable but does not satisfy assumption
ðHÞ. Tokarzewski's result (reported below as Theorem 1) has been
recently brought to the attention of the control theorists com-
munity by the book [11]. Tokarzewski obtained also a partial
converse of Theorem 1 (reported below as Proposition 1). A non-
linear extension of Tokarzewski's result has been obtained in [3].

Throughout this paper, we adopt the following notation: the
pair of matrices A1;A2 is denoted by F . A switching signal (i.e., any
piecewise, right continuous function from ½0; þ1Þ to f1;2g) is
denoted by σ. The switched system defined by F and σ is denoted
by ðF ;σÞ. For any pair of nonnegative numbers θ1;θ2, we denote
Φðθ1;θ2Þ ¼ eθ2A2eθ1A1 . We will use also the following shortened
notation: EðT ;αÞ ¼ΦðTα; Tð1�αÞÞ, ~A1 ¼ αA1, ~A2 ¼ ð1�αÞA2.

Finally, recall that a matrix M is said to be Hurwitz when all its
eigenvalues have negative real part; Schur when all its eigenvalues
lie in the unit open disc. In addition, we agree to call anti-Hurwitz a
matrix M such that �M is Hurwitz.

2. Description of the problem and main result

It is well known that the asymptotic behavior of a switched
system formed by linear vector fields and driven by a periodic
switching signal (the same for each initial state) is basically
equivalent to the asymptotic behavior of an associated discrete
time dynamical system [4]. More precisely, for a given pair of
matrices F ¼ fA1;A2g, let us take a pair of positive numbers θ1;θ2,
and let σ be the switched signal, periodic of period T ¼ θ1þθ2,
such that

σðtÞ ¼
1 for tA ½0;θ1Þ
2 for tA ½θ1;θ1þθ2Þ:

(
ð2Þ

Then, the following statements are equivalent:

(i) The switched system ðF ;σÞ is asymptotically stable at the
origin.

(ii) The time varying (periodic, piecewise constant) linear system
_x ¼ AðtÞx, where AðtÞ ¼ AσðtÞ, is asymptotically stable at the
origin.

(iii) The discrete dynamical system

ξkþ1 ¼Φðθ1;θ2Þξk: ð3Þ
is asymptotically stable at the origin.

(iv) The matrix Φðθ1;θ2Þ is Schur.

According to the previous equivalences, the periodic stabiliza-
tion problem for F reduces to an algebraic problem. The following
sufficient condition is well known [15,12,11].

Theorem 1. Let F be a pair of matrices. Let αA ½0;1� be such that the
matrix HðαÞ ¼ αA1þð1�αÞA2 ¼ ~A1þ ~A2 is Hurwitz. Then, there exists
T040 such that the matrix

EðT ;αÞ ¼ eTð1�αÞA2eTαA1 ¼ eT
~A2eT

~A1 ð4Þ
(with the same α) is Schur for each positive TrT0.

The proof of Theorem 1 is straightforward if A1;A2 commute
(this is for instance the case of the following Example 1). Indeed, in
this case, one has

eT
~A2eT

~A1 ¼ eTð
~A1 þ ~A2Þ

and the left hand side is recognized to be Schur for each T40,
since the eigenvalues of an exponential matrix eM are just the
exponential of the eigenvalues of M.

Example 1. Consider the family fA1;A2g, where

A1 ¼
�3 0
0 1

� �
; A2 ¼

1 0
0 �3

� �
:

It is straightforward to verify that the convex combination ðA1þ
A2Þ=2 is Hurwitz and that

EðT ;1=2Þ ¼ e�T 0
0 e�T

 !

is Schur for each T40.

In the much more frequent case where A1;A2 do not commute,
one way to prove Theorem 1 is to use the Baker–Campbell–
Hausdorff formula (see for instance [13]), which allows us to write
eT ~A2eT ~A1 ¼ eCðTÞ where

CðTÞ ¼ Tð ~A1þ ~A2Þþ
T2

2
½ ~A2; ~A1�þ

T3

12
ð½ ~A2; ½ ~A2; ~A1���½ ~A1; ½ ~A2; ~A1��Þþ⋯

ð5Þ
and ½M;N� ¼MN�NM denotes the commutator of the matrices
M;N. If ~A1þ ~A2 is Hurwitz, then for small T the terms of order
greater than one can be neglected, and the reasoning can be easily
carried out. However in general, as the following example shows,
the matrix (4) might be not Schur for large T.

Example 2. Consider the family fA1;A2g, where

A1 ¼
0 �2
2 0

� �
; A2 ¼

1 0
0 �2

� �

The convex combination ðA1þA2Þ=2 is Hurwitz. It is not difficult to
compute

EðT ;1=2Þ ¼ eT=2 cos T �eT=2 sin T

e�T sin T e�T cos T

 !

whose characteristic equation is

λ2�λðe�T þeT=2Þ cos Tþe�T=2 ¼ 0:

The roots can be computed and analyzed possibly with the aid of a
symbolic algebra package. Then their graphs can be plotted. The
conclusions can be resumed in this way. There exist two numbers
0oT1oT2 such that:

� for 0oToT1, EðT ;1=2Þ is Schur, with conjugate complex
eigenvalues;
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