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a b s t r a c t

This paper presents a fault detection method, which is able to identify the occurrence of a fault and,
possibly, its nature, in permanent-magnet DC motors. Techniques arising from Algebraic Geometry are
used to compute the motor dynamical model parameters in function of the output and its time
derivatives, up to a finite order. Similar tools are used to compute auxiliary expressions of the state of the
motor, independent of the estimated parameter. Simulative and experimental examples show the
effectiveness of the proposed technique.

& 2015 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In industrial applications, fault detection and identification are
among the most important techniques to improve the safety and
efficiency of many manufacturing processes [17,33,22,19,34,7,16,15,32].

Several different techniques have been developed to detect the
occurrence of a fault and to determine the exact location of the
fault [8]. Some of the most widespread methods used to reach
such a goal are based on parity relations from the state-space
model [5], on parity relations from the input–output model [14]
and on state observers [3].

In this paper, attention is focused on fault detection for
permanent-magnet DC motors. Such electromechanical systems
are used in many high-risk industrial applications, due to their low
price and to their low power consumption. Several different
techniques have been developed to analyze the faults of DC motors
[1,13,21,4]. Fault detection methods are generally divided into two
classes: methods based on signal analysis and methods based on
motor dynamical models. The first class is composed of methods
based on analyzing directly the measured signal to obtain infor-
mation about the state of the motor [20,12,31,10]. The second class
makes use of the motor dynamical model and is based on
estimating the parameters of such a motor model [11,18] or on
motor state estimation [37].

The fault detection and identification method presented in this
paper belongs to the class of the methods making use of the motor
dynamical model. In this paper, it is assumed that

(1) the motor dynamical behavior can be described, both in the
case of a normally working motor and in the case of a faulty motor,
by the same nonlinear dynamical model, but with different
parameters (in the following, normally working motor model
parameters are called nominal parameters, whereas faulty motor
model parameters are called faulty parameters);

(2) only a single faulty parameter is different from the correspon-
dent nominal one, i.e., an admissible fault is characterized by the
change of one single parameter (the possibility of removing this
assumption is discussed in the conclusions of this paper).

The organization of the paper is as follows: first, by using
Algebraic Geometry techniques [9,28,35,25,26,29], an algorithm is
given, at the end, to compute embeddings (i.e., functions of the
output and its time derivatives, which vanish identically along the
trajectories of the system) for the motor dynamical model, both in
the faulty and in the normal working case. Moreover, formulas,
expressing the motor dynamical model faulty parameters and the
unmeasured state, in function of the output and its time deriva-
tives, up to a finite order, are given.

Then, such embeddings and functions are given as input to
another procedure, able to identify when a fault has occurred, its
nature, fault size and the unmeasured state of the motor system.
To validate the method, the results obtained both in simulation
and by using real experimental data are reported.

Finally, the extension of the proposed method to time-varying
input voltages and load torques is reported, with a numerical
simulation, to show how the proposed technique can be applied
also in such a type of applications.
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2. Preliminaries and notation

The following dynamical model of a permanent-magnet DC
motor is given in Liu et al. [23]:

_x1 ¼ L�1ðu�Kex2�Rax1Þ; ð1aÞ

_x2 ¼ J�1
1 ðKTx1�T0�T2� f rx2� f px

2
2Þ; ð1bÞ

y¼ x1; ð1cÞ
where x1 is the armature current, x2 is the normalized rotational
speed, L and u are the armature inductance and voltage, J1 is the
normalized inertial moment of the rotator, fr is the friction
coefficient due to the bearing lubrication condition, fp is the
friction coefficient due to aerodynamics, T0 and T2 are the no-
load and load torque, Ke and KT are coefficients, respectively. It is
assumed that all these parameters are constant; such an assump-
tion is removed in Section 5 for u and T2.

Let x¼ ½x1 x2�> . Defining the vector field f(x) and the function
h(x) as follows:

f ðxÞ≔
L�1ðu�Kex2�Rax1Þ

J�1
1 ðKTx1�T0�T2� f rx2� f px

2
2Þ

" #
;

hðxÞ≔x1;

the observability map of order kþ1, with k being a non-negative
integer, is given by ye;k≔OkðxÞ, where ye;k ¼ ½y0 … yk�> , yjðtÞ ¼
djyðtÞ=dtj, j¼ 0;…; k, and

OkðxÞ ¼
L0f hðxÞ

⋮
Lkf hðxÞ

2
664

3
775;

where Ljþ1
f hðxÞ ¼ ∂Ljf hðxÞ=∂xf ðxÞ, L0f hðxÞ ¼ hðxÞ.

Let N be a given non-negative integer. A polynomial pðye;NÞ is
said to be an embedding of system (1) if

pðONðxÞÞ ¼ 0; 8xAR2;

i.e., if it vanishes identically along the output of system (1) and its
time derivatives [27].

Let p be a given multi-variable polynomial. The degree of p, with
respect to the variable xi, denoted by degxi ðpÞ, is the maximum
exponent of the variable xi in p. Let ϕARn be a given vector. When
needed, the symbol ½ϕ�i denotes the ith entry of vector ϕ.

3. Fault detector

In Section 3.1 some tools, borrowed from [27], are used to
compute an embedding of the motor dynamical model in the
nominal parameters. Then, a procedure (namely, Algorithm 1) able
to compute embeddings of the motor dynamical model, which
vanish even if a single parameter in the motor dynamical model
changes, and two formulas, expressing the faulty parameter and
the unmeasured state x2 as functions of the output and its time
derivatives, is reported. In Section 3.2, Algorithm 2, which takes as
input the formulas and the embeddings obtained by using
Algorithm 1, is used to design a fault detector for the DC motor.

3.1. Embeddings and expressions of the faulty parameters as
functions of the output and its time derivatives

Define the nominal parameters pi, with i¼ 1;…;7, as

p1 ¼
u
L
; p2 ¼

Ke

L
; p3 ¼

Ra

L
;

p4 ¼
KT

J1
; p5 ¼

T0þT2

J1
; p6 ¼

f r
J1
; p7 ¼

f p
J1
: ð2Þ

The dynamical model (1) can be rewritten as

_x1 ¼ p1�p2x1�p3x2
_x2 ¼ p4x1�p5�p6x2�p7x

2
2;

y¼ x1: ð3Þ
Hence, the map O3ðxÞ can be computed as

L0f hðxÞ ¼ x1; ð4aÞ

L1f hðxÞ ¼ p1�p2x1�p3x2; ð4bÞ

L2f hðxÞ ¼ ρ1ðxÞ; ð4cÞ

L3f hðxÞ ¼ ρ2ðxÞ; ð4dÞ

where ρ1ðxÞ ¼ x1ðp2
2�p3p4Þþp3ðx22p7þx2ðp2þp6Þþp5Þ�p1p2 and

ρ2ðxÞ ¼ ðp2
2�p3p4Þð �x1p2�x2p3þp1Þ� p3ð2x2p7þp2þp6Þð�

x1p4þx2ðx2p7þp6Þþp5Þ.
To compute an embedding of system (3) in the nominal

parameters, by using the procedure described in Menini and
Tornambe [27], define the ideal I in R½x1; x2; y2; y1; y0�,
I ¼ 〈y0�L0f ðxÞ; y1�L1f ðxÞ; y2�L2f ðxÞ〉�R½x1; x2; y2; y1; y0�;

where L0f h, L
1
f h and L2f h are given in (4) (note that the third order

directional derivative L3f hðxÞ of (4d) is not used here).
The Elimination Theorem (see Cox et al. [6]) implies that, by

computing a Groebner basis G of the ideal I , according to lexico-
graphic ordering, with x14x24y24y14y0, a Groebner basis of
the elimination ideal of I , which eliminates x1 and x2, is given by
G \ R½y2; y1; y0� ¼ fqnðye;2Þg, where

qnðye;2Þ ¼ p3ðy1p2þp3ðy0p4�p5Þþp6ðy0p2

�p1þy1Þþy2Þ�p7ðy0p2�p1þy1Þ2;
is an embedding of (1) in the nominal parameters.

In the rest of this section, it is assumed that the dynamical
behavior of the faulty motor can be described by (3) and that only
a single parameter can change in such a model, due to a fault (i.e., the
dynamical behavior of the faulty motor can be described by (3), by
substituting a single pi to the correspondent pi, with iAf1;…;7g).

Algorithm 1, which is based on the procedures described in
[24], can be used to compute embeddings of (3), which are not
explicitly dependent on the parameter pi. Hence, such embeddings
vanish even if the fault, characterized by the substitution of pi by
pi, occurs. Algorithm 1 also produces two polynomial functions
which express the parameter pi and the state variable x2 as
functions of the output and of its time derivatives.

Remark 1. To let the reader better appreciate Algorithm 1, a brief
summary of the operations which have to be carried out to complete
such an algorithm is reported. In Step 1, the ideal Ipi is defined from
the observability map O3ðxÞ. In Step 2, a Groebner basis Gpi of the
ideal Ipi is computed according to the lexicographic ordering with
x14x24pi4y34y24y14y0. Hence, in Step 3, it is possible to
compute a Groebner basis of the elimination ideal of Ipi , which
eliminates x1, x2 and pi, whence, by such a basis, in Step 4, an
embedding of system (1), which vanishes along the trajectories of
system (1), evenwhen the parameter pi changes, can be computed. In
Step 5, always by the Elimination Theorem (see Cox et al. [6]), a
Groebner basis of the elimination ideal of Ipi , which eliminates x1 and
x2, but not pi, can be computed. Hence, in Steps 6 and 7, a formula
expressing the faulty parameter, dependent only on the time deriva-
tives of the output, can be obtained. By the same reasoning, in Step 8,
a Groebner basis of the elimination ideal of Ipi , which eliminates x1
and pi, but not x2, can be computed. Hence, in Steps 9, 10 and 11, a
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