
Fast Model Predictive Control with soft constraints

Arthur Richards
Department of Aerospace Engineering, University of Bristol, Queens Building, University Walk, Bristol BS8 1TR, UK

a r t i c l e i n f o

Article history:
Received 22 November 2013
Received in revised form
7 August 2014
Accepted 19 May 2015
Recommended by B. Jayawardhana
Available online 14 June 2015

Keywords:
Model Predictive Control
Soft constraints
Interior point methods

a b s t r a c t

This paper describes a fast optimization algorithm for Model Predictive Control (MPC) with soft
constraints. The method relies on the Kreisselmeier–Steinhauser function to provide a smooth
approximation of the penalty function for a soft constraint. This is analogous to the approximation of
a hard constraint by a smooth logarithmic barrier function. By introducing this approximation directly
into the objective of an interior point optimization, there is no need for additional slack variables to
capture constraint violation. Simulation results show significant speed-up compared to using slack
variables.

& 2015 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Model Predictive Control (MPC) naturally handles constraints
on system behaviour [13]. It is widely adopted in the process
control industry [17] and becoming popular for faster systems
such as aircraft [7,19]. Although methods for off-line pre-compu-
tation of the MPC control law have been developed [1,8], solving
the MPC optimization in real-time remains an attractive prospect,
motivating the development of highly tailored algorithms for MPC
solvers [11,21].

The contribution of this paper is an extension of the Fast MPC
method of Wang and Boyd [21] for the efficient inclusion of soft
constraints [13, Section 3.4]. Since MPC involves the solution of a
constrained optimization, it is important to consider if that optimiza-
tion will be feasible. Many robust MPC methods exist to tackle this
problem – see, for examples, Refs [20,6,3] – but these are typically
quite complex and demand some model of the uncertainty to be
available. A simpler strategy is to allow the optimizer to “soften”
some constraints, i.e. to violate some of them at a penalty [4].

Soft constraint penalties work best when they are non-smooth
[4,9], taking effect only but immediately when a constraint is
violated. One way to avoid the complexity of a non-smooth optimizer
is to capture the constraint violation using additional “slack” decision
variables. The alternative approach of this paper is to avoid slack
variables altogether and introduce the constraint violation penalty
directly into the cost function of the optimizer. Since a non-smooth
objective would cause problems for a fast gradient-based optimizer,
the Kreisselmeier–Steinhauser (KS) function [10] is adopted to

provide a smooth approximation to the penalty. A similar approach
was taken by Wills and Heath [23] using a quadratic loss penalty for
constraint violation. Note that the smooth approximation of the 1-
norm penalty comes at the cost of losing the “exact penalty function”
guarantee [5], i.e. the property that constraint violation will not occur
unless unavoidable.

An important consideration is maintaining the special sparsity
pattern of the Hessian matrix of the quadratic program (QP) that
has to be solved on-line. Wang and Boyd's “Fast MPC” algorithm
[21] exploits this structure by using a highly tailored factorization
of the Hessian to calculate the Newton steps extremely efficiently.
The new development of this paper adds soft constraints without
increasing the number of decision variables or changing the
structure of the Hessian.

The KS function provides a smooth approximation to the max-
imum over a set of functions, avoiding the gradient discontinuities
where the maximum switches from one function to another. It is
popular for constraint aggregation in design optimization [16,24],
used to combine a large number of constraints giðxÞr08 i into a
single constraint maxigiðxÞr0 within a gradient-based optimizer.
For the work in this paper on soft constraints, the KS function will be
employed to represent the soft constraint penalty. In essence, the KS
function will approximate the soft constraints in the same way as a
logarithmic barrier function [2] approximates hard constraints. As in
the case of the log barrier, the approximate solution tends to the
exact solution as the barrier parameter is varied.

The paper begins with a review of the Fast MPC method from
Ref. [21] in Section 2, including the use of slack variables for soft
constraint handling. Section 3.1 provides a brief review of the KS
function and its properties. The use of the KS function for soft
constraints is developed in detail in Section 3.2. Simulation results

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ejcon

European Journal of Control

http://dx.doi.org/10.1016/j.ejcon.2015.05.003
0947-3580/& 2015 European Control Association. Published by Elsevier Ltd. All rights reserved.

E-mail address: arthur.richards@bristol.ac.uk

European Journal of Control 25 (2015) 51–59

www.sciencedirect.com/science/journal/09473580
www.elsevier.com/locate/ejcon
http://dx.doi.org/10.1016/j.ejcon.2015.05.003
http://dx.doi.org/10.1016/j.ejcon.2015.05.003
http://dx.doi.org/10.1016/j.ejcon.2015.05.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2015.05.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2015.05.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2015.05.003&domain=pdf
mailto:arthur.richards@bristol.ac.uk
http://dx.doi.org/10.1016/j.ejcon.2015.05.003


and performance comparisons are presented in Section 5 before
finishing with conclusions.

2. Review of fast MPC

This section presents the nomenclature to be adopted and
reviews the key points of Fast MPC. This review is an abbreviated
presentation of the work by Wang and Boyd [21] to provide the
context for the new representation of soft constraints. This section
also reviews the usual way to include soft constraints in MPC using
slack variables, used later for comparison.

2.1. Forming and solving the QP

Consider the following standard MPC optimization problem,
with quadratic cost and linear dynamics and constraints [13]. This
has to be solved at each time step in order to generate the closed-
loop control u(k):

min
XN�1

j ¼ 0

ℓðxðkþ jÞ;uðkþ jÞÞ

þxðkþNÞTQ f xðkþNÞþqT
f xðkþNÞ ð1Þ

subject to 8 jAf0;…;N�1g
xðkþ jþ1Þ ¼Axðkþ jÞþBuðkþ jÞ ð2aÞ

Ff xðkþNÞrf f ð2bÞ

Fxxðkþ jÞþFuuðkþ jÞÞrf ð2cÞ
whose decision variables are ðuðkÞ…uðkþN�1ÞÞ and
ðxðkþ1Þ…xðkþNÞÞ. Define the stage cost to be a combination of
linear and quadratic terms:

ℓðx;uÞ ¼ xQxþuTRuþqTxþrTu ð3Þ
Re-arranging the decision variable in the form

z¼ ðuðkÞ; xðkþ1Þ;…;uðkþN�1Þ; xðkþNÞÞ
means the optimization can be written as a quadratic program
(QP) of the form

min
z

zTHzþgTz ð4aÞ

subject to

Pzrh ð4bÞ

Cz¼ b ð4cÞ
The purpose of ordering in this way is to achieve banded
structures in the matrices P, C and H that can be exploited for
fast solution. Wang and Boyd introduce a logarithmic barrier
function to represent the inequality constraints:

ϕðzÞ ¼
X
i

� log ðhi�pT
i zÞ ð5Þ

where pT
i is the row i of matrix P. Thus the final form of the

optimization is an equality-constrained nonlinear program:

min
z

zTHzþgTzþκϕðzÞ ð6aÞ

subject to

Cz¼ b ð6bÞ
Crucially, this problem is still convex, so it can be solved to
optimality by a Newton method [2]. Augmenting the problem
with Lagrange multipliers ν associated with constraints (6b), the
residuals are

rd ¼ 2HzþgþκPTdþCTν ð7Þ

rp ¼ Cz�b ð8Þ
noting that PTd¼∇ϕðzÞ where di ¼ 1=ðhi�pT

i zÞ and pT
i is row i of

matrix P. Then the necessary conditions for optimality are rd ¼ 0
and rp ¼ 0. Finding the Newton step requires solving the equation

Φ CT

C 0

" #
Δz
Δν

" #
¼

rd
rp

" #
ð9Þ

where

Φ¼ 2HþκPT diagðdÞ2P; ð10Þ
with the second term being κ∇2ϕðzÞ.

The key enabler of Fast MPC is that the matricesΦ and C have a
sparse structure that permits efficient solution of the linear system
in (9). The reader is directed to Reference [21] to see how this is
performed.

2.2. Including soft constraints

Introduce into the problem a set of soft constraints:

~Fxxðkþ jÞþ ~Fuuðkþ jÞr ~f : ð11Þ
Then the predicted soft constraint violation at each step is given by

vðkþ jÞ ¼maxf0; ~FT
xxðkþ jÞþ ~F

T
uuðkþ jÞ� ~f g ð12Þ

where the “max” is evaluated element by element, such that no
element of vðkþ jÞ can be negative. Finally, the violation is
penalized by adding some norm of the signal vðkþ jÞ to the
objective (1). For example, the following term penalizes the worst
case violation at each step:X
j

Jvðkþ jÞJ1: ð13Þ

de Oliveira and Biegler [4] compared different weighting strategies
and identified that the “exact penalty” methods, using either the
1-norm or the 1-norm, can avoid unnecessary constraint viola-
tions. Note that different levels of weighting on violation of each
constraint can be achieved by scaling the rows of ~Fx, ~Fu and ~f .

The most convenient way to introduce soft constraints into the
formulation in Section 2.1 is to augment the control signal with a
dummy control input sðkþ jÞ to act as a slack variable, such that the
scalar input vector uðkþ jÞ is augmented to become
½uT ðkþ jÞ sðkþ jÞ�T . Then the soft constraints are folded into addi-
tional hard constraints in the form

Fx
~Fx

0

2
64

3
75xðkþ jÞþ

Fu 0
~Fu �1
0 �1

2
64

3
75 uðkþ jÞ

sðkþ jÞ

 !
r

f
~f
0

2
64
3
75: ð14Þ

Note that this enforces sðkþ jÞZ0 and sðkþ jÞZ ~f
T
xi
xðkþ jÞþ

~f
T
ui
uðkþ jÞÞ� ~f i for all i where ~f

T
xi is the row i of ~Fx, etc. Hence

augmenting the cost weight rT ¼ ½0T1� in (3) penalizes constraint
violation in the form (13). Since (14) is identical in form to (2c), the
augmented problem can be directly solved using the Fast MPC
algorithm presented in Section 2.1.

This approach introduces an additional N decision variable
sðkþ jÞ, one for every time step j in the horizon. Using different
norms for the soft constraint penalty [4], it is possible to introduce
just one additional slack variable, capturing the worst case viola-
tion across all time steps. However, this destroys the banded
structure in the matrix Φ that is central to the fast solution of
the QP.

It is interesting to note that the use of a single slack variable
would leaveΦwith an “arrow” structure [2, p. 670] which can also
be exploited for efficient solutions. Alternatively, it is possible to
eliminate the slack variables along with Lagrange multipliers in
interior point solvers [18, Section 3.2]. However, these ideas are

A. Richards / European Journal of Control 25 (2015) 51–5952



Download English Version:

https://daneshyari.com/en/article/707641

Download Persian Version:

https://daneshyari.com/article/707641

Daneshyari.com

https://daneshyari.com/en/article/707641
https://daneshyari.com/article/707641
https://daneshyari.com

