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a b s t r a c t

Classical control theory does not scale well for large systems such as power networks, traffic networks
and chemical reaction networks. However, many such applications in science and engineering can be
efficiently modeled using the concept of positive systems and the nonlinear counterpart monotone
systems. It is therefore of great interest to see how such models can be used for control.

This paper demonstrates how positive systems can be exploited for analysis and design of large-scale
control systems. Methods for synthesis of distributed controllers are developed based on linear
Lyapunov functions and storage functions instead of quadratic ones. The main results are extended to
frequency domain input–output models using the notion of positively dominated system. Applications to
transportation networks and vehicle formations are provided.

& 2015 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The theory of positive systems and nonnegative matrices has a
long history, dating back to the Perron–Frobenius Theorem in
1912. A classic book on the topic is [2]. The theory is used in
Leontief economics [11], where the states denote nonnegative
quantities of commodities. It also appears in the study of Markov
chains [21], where the states denote nonnegative probabilities and
in compartment models [9] to model for example populations
of species. A nonlinear counterpart is the theory for monotone
systems, characterized by the property that a partial ordering of
initial states is preserved by the dynamics. Such dynamical
systems were studied in a series of papers by Hirsch [13,14].

Positive systems have also been studied in the control literature
[23,6,10], and increasingly so during the last decade. Feedback
stabilization of positive linear systems was studied in [5]. Stabiliz-
ing static output feedback controllers were parameterized using
linear programming in [16,15] and extensions to input–output
gain were given in [24,4]. Tanaka and Langbort [22] proved that
the input–output gain of positive systems can be evaluated using a
diagonal quadratic storage function and utilized this for H1 opti-
mization of decentralized controllers in terms of semi-definite
programming.

This paper builds on several contributions by the author [17–
19], deriving theory that is applicable to control systems of very
large scale. Such systems appear for example in traffic networks,
power networks and chemical reaction networks. Classical meth-
ods for multi-variable control, such as linear quadratic control and
H1-optimization, do not scale well. The difficulties are partly due

to computational complexity and partly to the absence of dis-
tributed structure in the resulting controllers. The complexity
growth can be traced back to the fact that stability verification of
a linear system with n states generally requires a Lyapunov
function involving n2 quadratic terms, even if the system matrices
are sparse. As was pointed out in [17], the situation improves
drastically if we restrict attention to positive systems. Then
stability and input–output gain can be verified using a Lyapunov
function with only n linear terms. Sparsity can be exploited and
even synthesis of distributed controllers can be done with a
complexity that grows linearly with the number of nonzero entries
in the system matrices. As will be demonstrated in this paper,
these observations have far-reaching implications for control
engineering:

1. The conditions that enable scalable solutions hold naturally in
many important application areas, such as stochastic systems,
economics, transportation networks, chemical reactions, power
systems and ecology.

2. The essential mathematical property can be extended to
frequency domain models, using the concept of “positively
dominated” transfer function.

3. The assumption of positive dominance need not hold for the
open loop process. Instead, a large-scale control system can
often be structured into local control loops that give positive
dominance, thus enabling scalable methods for optimization of
global input–output gains.

The paper is structured as follows: Section 2 introduces nota-
tion. Stability conditions and input–output bounds for positive
systems are reviewed in Section 3. Those results are mostly well
known, but some aspects of Proposition 3–5 are new. The use in
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scalable verification of transportation networks and vehicle for-
mations is introduced in Section 4. Similar ideas are then exploited
in Section 5 for synthesis of stabilizing optimal controllers using
distributed linear programming. The contributions, Theorems 6
and 7, can be viewed as generalizations of results in [4]. Finally,
Section 6 extends the techniques to frequency domain input–
output models using the notion of positively dominated transfer
function. Further applications to vehicle platoons and transporta-
tion networks are given. Summarizing conclusions are given
before an appendix with proofs and references.

2. Notation and terminology

Let Rþ denote the set of nonnegative real numbers. For xARn,
let jxj ARn

þ be the element-wise absolute value. This notation
should not be confused with the vector norms jwj p ¼ jw1 j pþ⋯ð
þ jwm j pÞ1=p for pAð0;1Þ and jwj1 ¼maxi jwi j . Given MACr�m,
define the induced matrix norm

JM Jp� ind ¼ sup
wARm \f0g

jMwj p
jwj p

:

The spectral norm JMJ2� ind will often just be denoted JMJ . Let
θðtÞ be the Heaviside step function and δðtÞ the Dirac delta
function. Then the transfer matrix GðsÞ ¼ C sI�Að Þ�1BþD has the
impulse response gðtÞ ¼ CeAtBθðtÞþDδðtÞ. With wALmp ½0;1Þ, let
gnwALrp½0;1Þ be the convolution of g and w and define the
induced norms

JgJp� ind ¼ sup
wALmp ½0;1Þ

JgnwJp
JwJp

where JwJp ¼
P

k

R1
0 jwkðtÞj p dt

� �1=p for pAð0;1Þ and JwJ1 ¼
suptmaxk jwkðtÞj . Let JGJp� ind≔JgJp� ind, where g is the impulse
response of G. The norm JGJ2� ind is often called the H1 norm,
denoted JGJ1. It is well known that JGJ1 ¼ supω JGðiωÞJ .

The notation 1 means a column vector with all entries equal to
one. The inequality X40 (XZ0) means that all elements of the
matrix (or vector) X are positive (nonnegative). For a symmetric
matrix X, the inequality Xg0 means that the matrix is positive
definite. The matrix AARn�n is said to be Hurwitz if all eigenvalues
have negative real part. It is Schur if all eigenvalues are strictly
inside the unit circle. Finally, the matrix is said to be Metzler if all
off-diagonal elements are nonnegative. The notation RH1 repre-
sents the set of rational functions with real coefficients and
without poles in the closed right half plane. The set of n�m
matrices with elements in RH1 is denoted RHn�m

1 . The state space
model

_x ¼ AxþBu

y¼ CxþDu

(

is said to be an internally positive system if A is Metzler and
B;C;DZ0. It is called an externally positive system if the impulse
response CeAtBθðtÞþDδðtÞ is nonnegative. A transfer matrix G is

called positively dominated if every matrix entry satisfies
jGjkðiωÞjrGjkð0Þ for all ωAR.

The term positive system will not be given a precise definition.
However, internally positive systems, externally positive systems and
positively dominated systemswill all be viewed as instances of positive
systems. The essential property is that there exists a positive cone in
the signal space which is left invariant by the input–output map.

3. Preliminaries

This section introduces some preliminary results on positive
systems. Propositions 1 and 2 are well known in the literature
since before. References are given in the appendix. Propositions 3–
5 are partly known from [4], partly new. Full proofs are given in
the same appendix.

Proposition 1. Given a Metzler matrix AARn�n, the following
statements are equivalent:

(1.1) The matrix A is Hurwitz.
(1.2) There exists ξARn such that ξ40 and Aξo0.
(1.3) There exists zARn such that z40 and zTAo0.
(1.4) There exists a diagonal matrix Pg0 such that ATPþPA!0.
(1.5) The matrix �A�1 exists and has nonnegative entries.

Moreover, if ξ¼ ðξ1;…; ξnÞ and z¼ ðz1;…; znÞ satisfy the conditions
of (1.2) and (1.3) respectively, then P ¼ diagðz1=ξ1;…; zn=ξnÞ satisfies
the conditions of (1.4).

Remark 1. Each of the conditions (1.2), (1.3) and (1.4) corre-
sponds to a Lyapunov function of a specific form. If Aξo0, then
VðxÞ ¼maxiðj xi j=ξiÞ is a Lyapunov function with rectangular level
curves. If zTAo0, then VðxÞ ¼ zT jxj is a Lyapunov function which is
linear in the positive orthant. Finally if ATPþPA!0 and Pg0,
then VðxÞ ¼ xTPx is a quadratic Lyapunov function for the system
_x ¼ Ax. See Fig. 1.

A discrete time counterpart will also be used:

Proposition 2. For BARn�n
þ , the following statements are

equivalent:

(2.1) The matrix B is Schur stable.
(2.2) There is a ξARn such that ξ40 and Bξoξ.
(2.3) There exists a zARn such that z40 and BTzoz.
(2.4) There is a diagonal Pg0 such that BTPB!P.
(2.5) I�Bð Þ�1 exists and has nonnegative entries.

Moreover, if ξ¼ ðξ1;…; ξnÞ and z¼ ðz1;…; znÞ satisfy the conditions
of (2.2) and (2.3) respectively, then P ¼ diagðz1=ξ1;…; zn=ξnÞ satisfies
the conditions of (2.4).

To quantify control performance, it is useful to also discuss
input–output gains. A remarkable feature of positive systems is
that the input–output gain is determined by the static behaviour
[17]:

Fig. 1. Level curves of Lyapunov functions corresponding to the conditions (1.2), (1.3) and (1.4) in Proposition 1. See Remark 1.
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