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where I, is the identity matrix of dimension two. It
follows that ¢ is nonsingular iff y # —L? and / is not
orthogonal to the bar. The feedback # = —c¢ 'a+ ¢ 'y
produces z?) = v in closed loop, and so it is a solution
of the relative-decoupling problem. Note that n =8,
k*=k*=2,dimz=p(z)=3 and dimY;_;=2.
Hence, from Theorem 2 part (iii), z is a relatively
flat output. In particular, from Theorem 4 and
Corollary 1, when the constraint y(¢) = 0 is added,
the given feedback is a decoupling and linearizing
feedback law for the corresponding DAE.

8. Conclusions

The results of this paper may be useful for studying
flatness and the dynamic decoupling problem for
implicit systems. It is important to point out that our
results show effective ways for computing the output
rank and control laws for dynamic feedback linear-
ization and/or decoupling of an implicit system I,
without the need to transform I' into an explicit
system. In fact, note that the relative dynamic exten-
sion algorithm for affine systems relies only on sums,
multiplications and matrix inversions.
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A Computation of the Static-Feedback of
the kth Step of RDEA

Let

_(k _ i ~ _ ~
Z/(c ) — a(l, xk_1) + b(l‘, xk_l)wk + C(l, xk—l),uk—l

k -~ ~ ™ ~ —~, ~
55( V= Gt %) + b1, T )wr + €t 1 )

Up to a reordering of the components of z, we may
assume that rank ¢ = rank ¢ = gy is locally constant.
Up to a reordering of the components of y;_;, we may
suppose that ¢ = [¢]) ¢12], where ¢ is locally non-
singular. Then define locally
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Then it is easy to verify this choice of (ay,ax,0%) is
such that (18) holds.

B Proof of Lemma 2

Proof. Along this proof, we shall write w = wy. By
(19), it is clear that wy = w® for k=0,1,.... The
following remark is instrumental for the proof:

Remark 9. Assume that (X;_;,u;—1) is a state repre-
sentation around & Then by  definition,
U = {t, X1, (w,((’),u,(c’ll :j€N)} is a local coordinate
chart around &. In particular, the differentials of the

functions of W are locally independent.

Let (X_;,2_) be the state representation of system
S with output z(¥) defined by (16). In step k — 1 of this
algorithm (k=0,1,2,...) one has constructed a
classical (local) state representation (Xj_i,ux_1),
where ;1 = (wg, r—1), with output 20 defined on
an open neighborhood Uj_; of £ € S. Assume that
span{dt,dx;_y, dwy,dz'¥} is nonsingular around ¢'.
Note that we can give the following geometric
description of the step k of RDEA:

(S1) Choose z; (possibly among the components of
z) by completin % {dt, dxx_1,dwr} into a basis
{dt, dx;.— l,dwk,dz }for span{dt, dx;_y, dwy, dz\¥)}.

(S2) Now choose i (possibly among the compo-
nents of py_;) by completlng dt, dx,_ 1,dwk,dzk>}
into a basis {dr, dx;_ 1,dwk,dzk ,dp} of span{dt,
dXy_1,du;_1}. According to the Section 2.1, this
defines a local state feedback with new input'” (wy, vk ),
where v, = (2,(!(), ). By construction, this state feed-
back has the property (18).

(S3) Define the new state representation (X, uy) by
taking Xy = (X l,wk,zék)), and u; = (dx, uk), where
e = (Z,Ek , ;). This is an extension of the state of
the form (19).

The proof of Lemma 2 relies on (S1), (S2), (S3).
(1 and 2). We show first that the state representation
(X, ur) is classical, This property holds for k = —1.
By induction, assume that it holds for k — 1. Then
from (S1), (S2) and (S3) we have span{dx}

161t is easy to show that this is equivalent to the fact that the matrix
¢k (2, Xr—1) of (5) has constant rank around &.

"In fact, by construction we have that {dt, dx—1,dur—, } and
{dt, dx_1, dwi, dv } are both local basis of the same codistribution.
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C span{ds, d%s_i, dity_1, dwy, dix, dz\, dz*V}
span{‘dt dxy, dui}. By (S1), (S2), (S3) notlce that
de S spdn{dt dxy_1, dug_1, dwy, dw;”dzk de },
and so, span{dz**1} C span{dt, dx;, du,}.

We show now 1 and 2 by induction. Since
X_ | = Xp_1, by part 1 of Lemma 1 it follows that
span{dt,dx_} = V- = L_;. By remark 2, from parts
I and 8 of Lemma 1, and from the fact that
span{dz} C span{dt, dx, du} C Vi + span{du} it fol-
lows that 1 and 2 are satisfied for k = —1. Assume
that, in the step k — 1 we have a local state repre-
sentation (Xx_p,u—1) satisfying 1 and 2. Choose a
partition z¥) = (le,k), Efck)) in a way that (S1) is satisfied
and construct g satisfying (S2). By 1 for k — 1 and
(S1) and from the fact that w; = w®), it follows that
span{dt, dx;} = span{dt dxy_1, dw® dz(/‘} = span
{dt, d%_1, do®, dz"} = £, o span{du®), dz1)1.
From the fact that Wy = w = )7, kx) , by (14) and part 8
of Lemma I, it follows that L; ; + span{dw®),

W = £y, showing 1 for k.

We show now that if 2 holds for kX — 1, then
span{dt, dxy, duy} = L1 + span{du},  completing

the induction. By (S1), (S2) and (S3) and from the fact
that span{dz (1) } Cspan{dz®)} C span{dt,dx;.duy},
it follows that “span{dt,dXy,du;} =span{dt,dxy_,,
Jdk,l}+span{dw(k+'),dz,((k+l)} By the
hypothesis, we have span{dr,dXxy,duy}=Ly+span
{du} +span{dw(k“>,dz,((k+l)}. By part 8 of Lemma 1
and the fact that w:)?gi*), this shows 2 for k. (3,5, 6, 7).
Note now that, since {dt,dxy} ={dt,dxi_, dwk,dfﬁf)}

is a basis of £ and {dt,dx;_,} is a basis of L;_y, it
follows that

induction

{dwy} is independent mod Lj_;. (31)

In particular, *idwk} is also independent mod L ;.
Since w=jy,." and card w; = card w=p(y), by
remark 1, we see that dim£; — dimZCy_; > p(y) and
that dimZ; — dimZLi_; > p(y). We show first that

dil’nLk(V) — dimLk,l (l/) > dimLkJr] (I/)—
dimZy(v), for every v € Sy (32)

In fact, if the 1-forms {n,...,ns} C L are linearly
dependent mod Ly, ie., if aodt—&—Zf:laml-—Fle
SR Bydy? + 320 S8 vz =0, then differ-
entiation in time gives codt + Y. (ami + ami)+
> Zk 0 1@1]“’)’@ + ﬂijdyyﬂ)) + 2 Zjl'(;ol
(3= + ~v;d=Y"") = 0. In other words, the 1-forms
1, ..., 1N are linearly dependent mod Lk Let £ € S;.

From the nonsingularity of L;, £;,j = S kin Sy, if
dimZ; —dimL;_; =/+p(y) in £ € Sk, then by (31)
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