
R ¼ 1 0

�ðx1 � x2Þ=2 I2

� �

where I2 is the identity matrix of dimension two. It
follows that c is nonsingular iff y 6¼ �L2 and h is not
orthogonal to the bar. The feedback �uu ¼ �c�1aþ c�1�vv
produces zð2Þ ¼ �vv in closed loop, and so it is a solution
of the relative-decoupling problem. Note that n ¼ 8,
k� ¼ ~kk� ¼ 2, dim z ¼ ~��ðzÞ ¼ 3 and dimYk��1 ¼ 2.
Hence, from Theorem 2 part (iii), z is a relatively
flat output. In particular, from Theorem 4 and
Corollary 1, when the constraint yðtÞ ¼ 0 is added,
the given feedback is a decoupling and linearizing
feedback law for the corresponding DAE.

8. Conclusions

The results of this paper may be useful for studying
flatness and the dynamic decoupling problem for
implicit systems. It is important to point out that our
results show effective ways for computing the output
rank and control laws for dynamic feedback linear-
ization and/or decoupling of an implicit system �,
without the need to transform � into an explicit
system. In fact, note that the relative dynamic exten-
sion algorithm for affine systems relies only on sums,
multiplications and matrix inversions.
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par bouclage dynamique et transformations de
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A Computation of the Static-Feedback of
the kth Step of RDEA

Let

�zz
ðkÞ
k ¼ �aaðt, xk�1Þ þ �bbðt, exxk�1Þ!k þ �ccðt, exxk�1Þ�k�1

bzzðkÞk ¼ baaðt, exxk�1Þ þ bbbðt, exxk�1Þ!k þ bccðt, exxk�1Þ�k�1

Up to a reordering of the components of z, we may
assume that rank c ¼ rank �cc ¼ e��k is locally constant.
Up to a reordering of the components of �k�1, we may
suppose that �cc ¼ ½�cc11 �cc12�, where �cc11 is locally non-
singular. Then define locally

F ¼ 0 I2=2

�hTðx1 � x2Þ½1þ ðyþ L2Þ=2� �hT½I2 þ ðx1 � x2Þðx1 � x2ÞT�=2

� �
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�kðt, exxk�1Þ ¼
�cc11 �cc12

0 I

� ��1

¼ �cc�1
11 ��cc�1

11 �cc12

0 I

� �

Let ���kðt, exxk�1Þ þ b��kðt, exxk�1Þ!k ¼ �k
��aa� �bb!k

0

� �
and let�k�1¼ ���kðt,exxk�1Þþ b��kðt,exxk�1Þ!kþ�kðt,exxk�1Þvk.
Then it is easy to verify this choice of ð���k,b��k,�kÞ is
such that (18) holds.

B Proof of Lemma 2

Proof. Along this proof, we shall write ! ¼ !0. By
(19), it is clear that !k ¼ !ðkÞ for k ¼ 0, 1, . . .. The
following remark is instrumental for the proof:

Remark 9. Assume that ðexxk�1, euuk�1Þ is a state repre-
sentation around �. Then by definition,
� ¼ ft, exxk�1, ð!ðjÞ

k ,�
ðjÞ
k�1 : j 2 NÞg is a local coordinate

chart around �. In particular, the differentials of the
functions of � are locally independent.

Let ðexx�1, euu�1Þ be the state representation of system
S with output zð0Þ defined by (16). In step k� 1 of this
algorithm ðk ¼ 0, 1, 2, . . .Þ one has constructed a
classical (local) state representation ðexxk�1, euuk�1Þ,
where euuk�1 ¼ ð!k,�k�1Þ, with output zðkÞ defined on
an open neighborhood Uk�1 of � 2 S. Assume that
spanfdt, dexxk�1, d!k, dz

ðkÞg is nonsingular around �16.
Note that we can give the following geometric
description of the step k of RDEA:

(S1) Choose �zzk (possibly among the components of
z) by completing fdt, dexxk�1, d!kg into a basis
fdt, dexxk�1, d!k, d�zz

ðkÞ
k g for spanfdt, dexxk�1, d!k, dz

ðkÞg.
(S2) Now choose b��k (possibly among the compo-

nents of e��k�1) by completing fdt, dexxk�1, d!k, d�zz
ðkÞ
k g

into a basis fdt, dexxk�1, d!k, d�zz
ðkÞ
k , db��kg of spanfdt,

dexxk�1, deuuk�1g. According to the Section 2.1, this
defines a local state feedback with new input17 ð!k, vkÞ,
where vk ¼ ð�zzðkÞk , b��kÞ. By construction, this state feed-
back has the property (18).

(S3) Define the new state representation ðexxk, euukÞ by
taking exxk ¼ ðexxk�1,!k, �zz

ðkÞ
k Þ, and euuk ¼ ð _!!k,�kÞ, where

�k ¼ ðzðkþ1Þ
k , b��kÞ. This is an extension of the state of

the form (19).
The proof of Lemma 2 relies on (S1), (S2), (S3).

(1 and 2). We show first that the state representation
ðexxk, euukÞ is classical, This property holds for k ¼ �1.
By induction, assume that it holds for k� 1. Then
from (S1), (S2) and (S3) we have spanfd _exxexxkg

� spanfdt, dexxk�1, deuuk�1, d!k, d _!!k, d�zz
ðkÞ
k , d�zz

ðkþ1Þ
k g �

spanfdt, dexxk, deuukg. By (S1), (S2), (S3) notice that
d bzzðkþ1Þ

k 2 spanfdt, dexxk�1, deuuk�1, d!k, d _!!k, d�zz
ðkÞ
k , d _�zz�zz

ðkÞ
k g,

and so, spanfdzðkþ1Þg � spanfdt, dexxk, deuukg.
We show now 1 and 2 by induction. Sinceexx�1 ¼ xk��1, by part 1 of Lemma 1 it follows that

spanfdt, dexx�1g ¼ Yk� ¼ L�1. By remark 2, from parts
1 and 8 of Lemma 1, and from the fact that
spanfdzg � spanfdt, dx, dug � Yk� þ spanfdug it fol-
lows that 1 and 2 are satisfied for k ¼ �1. Assume
that, in the step k� 1 we have a local state repre-
sentation ðexxk�1, euuk�1Þ satisfying 1 and 2. Choose a

partition zðkÞ ¼ ð�zzðkÞk , bzzðkÞk Þ in a way that (S1) is satisfied
and construct b��k satisfying (S2). By 1 for k� 1 and
(S1) and from the fact that !k ¼ !ðkÞ, it follows that
spanfdt, dexxkg ¼ spanfdt, dexxk�1, d!

ðkÞ, d�zzðkÞk g ¼ span
fdt, dexxk�1, d!

ðkÞ, dzðkÞk g ¼ Lk�1 þ spanfd!ðkÞ, dzðkÞg.
From the fact that !0 ¼ ! ¼ �yy

ðk�Þ
k� , by (14) and part 8

of Lemma 1, it follows that Lk�1 þ spanfd!ðkÞ,
dzðkÞg ¼ Lk, showing 1 for k.

We show now that if 2 holds for k� 1, then
spanfdt, dexxk, deuukg ¼ Lkþ1 þ spanfdug, completing
the induction. By (S1), (S2) and (S3) and from the fact

that span d�zz
ðkþ1Þ
k

n o
�spanfdzðkÞg�spanfdt,dexxk,deuukg,

it follows that spanfdt,dexxk,deuukg¼spanfdt,dexxk�1,

deuuk�1gþspan d!ðkþ1Þ,dzðkþ1Þ
k

n o
. By the induction

hypothesis, we have spanfdt,dexxk,deuukg¼Lkþspan

fdugþspanfd!ðkþ1Þ,dzðkþ1Þ
k g. By part 8 of Lemma 1

and the fact that !¼ �yy
ðk�Þ
k� , this shows 2 for k. (3, 5, 6, 7).

Note now that, since fdt,dexxkg¼fdt,dexxk�1, d!k,d�zz
ðkÞ
k g

is a basis of Lk and fdt,dexxk�1g is a basis of Lk�1, it
follows that

fd!kg is independent mod Lk�1: ð31Þ
In particular, fd!kg is also independent mod Lk�1.
Since ! ¼ �yy

ðk�Þ
k� and card !k ¼ card ! ¼ �ðyÞ, by

remark 1, we see that dimLk � dimLk�1 � �ðyÞ and
that dimLk � dimLk�1 � �ðyÞ. We show first that

dimLkð�Þ � dimLk�1ð�Þ � dimLkþ1ð�Þ�
dimLkð�Þ, for every � 2 Sk ð32Þ

In fact, if the 1-forms f	1, . . . ,	sg�Lk are linearly
dependent mod Lk�1, i.e., if �0dtþ

Ps
i¼1�i	iþ

Pr
i¼1Pk�þk�1

j¼0 �ijdy
ðjÞ
i þPp

i¼1

Pk�1
j¼0 
ijdz

ðjÞ
i ¼ 0, then differ-

entiation in time gives _��0dt þ Ps
i¼1ð _��i	i þ �i _		iÞþPr

i¼1

Pk�þk�1
j¼0 ð _��ijdy

ðjÞ
i þ �ijdy

ðjþ1Þ
i Þ þ Pp

i¼1

Pk�1
j¼0

ð _

ijdzðjÞi þ 
ijdz
ðjþ1Þ
i Þ ¼ 0. In other words, the 1-forms

_		1, . . . , _		s are linearly dependent mod Lk. Let � 2 Sk.
From the nonsingularity of Lj,Lj, j ¼ 0, . . . , k in Sk, if

dimLk � dimLk�1 ¼ lþ �ðyÞ in � 2 Sk, then by (31)

16It is easy to show that this is equivalent to the fact that the matrix
ckðt, exxk�1Þ of (5) has constant rank around �.
17In fact, by construction we have that fdt, dexxk�1, deuuk�1g and
fdt, dexxk�1, d!k, dvkg are both local basis of the same codistribution.
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