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a b s t r a c t

The paper considers the sampled-data control problem for multivariable continuous LTI processes when
colored stationary stochastic disturbances act on their inputs. The design problem is to find a causal
stabilizing controller, which ensures the minimal value of the mean output variance. Based on the
parametric transfer matrix (PTM) concept, a constructive polynomial solution of that design problem is
provided. A number of general properties of the optimal system is derived, which are important for
practical applications. In particular, the existence of fixed poles is shown. A consequence of this fact is a
principal performance limitation of the H2 optimal control loop.

& 2013 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

A fundamental task of direct design of sampled-data systems
consists in the standard H2�optimization problem [5,2,15,12,24,
6,11,17,1,23,20,21] which leads to the construction of a stabilizing
discrete controller that ensures the minimal mean variance of the
output of the closed sampled-data system under vector white noise
acting on the input. Existing methods for the solution of the standard
sampled-data H2�optimization problem can be classified into two
groups. The design methods of the first group are connected with the
solution of an associated matrix Riccati equation. The best known
instances of this group are the lifting method [2,15,24,6] and the FR-
operator method [11]. Also the hybrid state space method [12], and
the indirect discretization method developed in [17,1], belong to
this class.

As an alternative to the above methods we can consider the
frequency polynomial approach associated with the application of
the parametric transfer matrix (PTM), [20,21]. This approach allows
to apply the idea of the Wiener–Hopf method in the form [25]. As
shown in [20,21], the application of the PTM method results in the
standardH2 problem for the optimal system, where its characteristic
polynomial possesses reduced degree in comparison with applying
the Riccati equation method. Moreover, for the standardH2 problem,
the PTM method discloses a number of up to now unknown
properties of the optimal system. In particular, we found that among
the poles of the continuous LTI process, there exists in dependence of

the structure of the SD system a set Mf of fixating poles, which are
characterized by the following properties:

(a) When among the set of fixating poles, there are poles on the
imaginary axis, then the H2�optimization problem does not
possess a solution in the set of causal stabilizing controllers.

(b) Let the set of fixating poles be composed of the numbers
s1;…; sq, where Re sio0 for i¼ 1;…; η, and Re si40 for
i¼ ηþ 1;…; q. Then the set of poles of the optimal system
contains the numbers ζi ¼ e−siT ; i¼ 1;…; η, and ζi ¼ esiT ;
i¼ ηþ 1;…; q. Further on those poles are called fixed ones.
Previously, the existence of fixed poles at the H2 optimization
problem for continuous or discrete LTI systems was described
in [3,4].

The present paper extends the PTM method for the solution of the
generalized H2�optimization problem, when stationary colored
noise acts on the input of the SD system. In principle, this problem
can be solved on basis of the Riccati equation method by extending
the state space model of the continuous process. However, in the
given case the application of the PTM method results, as for the
standard H2 problem, in a reduced order optimal system, and
the offered approach grants to detect a number of general proper-
ties of the optimal system, which are unknown up to now, but
important for practical applications in monitoring and control [10].
In particular, the following properties should be quoted:

(1) In the generalized H2 problem, analogously to the standard
problem, there exists a set of fixating poles of the LTI process,
which depend on the structure of the process, the attack point
of the excitation and the location of the SD system output.
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(2) The set of fixed poles for the standard and the generalized H2

optimization problem coincide.
(3) Those poles determined by the properties of the coloring filter of

the input signal are formally configured by the factorization, but
they do not belong to the fixed poles, and under some assump-
tions, which are satisfied practically always, they will be canceled
during the construction procedure of the optimal controller.

The above-named properties of the optimal system have to be
regarded at the solution of practical problems. Here the following
should be mentioned:

(i) The fact that a set of fixed poles exists, essentially restricts the
performance of H2 optimal systems. When the set of fixating
poles contains poles located close to the imaginary axis, then
the corresponding fixed poles are located close to the unit
circle, i.e. the system is close to the stability bound. Therefore,
an appropriate SD control system design on basis of the H2

optimization methods needs to construct the set of fixating
poles of the continuous process and to study its properties.

(ii) As known, the H∞ optimization is a limit case of a generalized
H2 optimization problem. Therefore, the fact that the set of
fixed poles exists and is independent on the spectrum of the
input signal in the generalized H2 optimization problem is
transferred also to the H∞ optimal system. For SISO systems
this statement is strongly proven in [18].

The paper is organized as follows. Section 2 provides the
description of the system and the formulation of the problem.
Section 3 gives some preliminaries on polynomial and rational
matrices. Most of these facts are known, but they are presented in
a form which is used in the further considerations.

In Sections 4 we consider fundamental properties of parametric
discrete models of continuous processes. Section 5 provides the
polynomial procedure for constructing the transfer matrix of the
optimal controller. In Section 6 we consider general properties of
the optimal system, and we proof the reduction of the poles of the
forming filter. Finally, in Section 7 we demonstrate the application
of the provided method at hand of an example.

2. System description and problem

(1) The paper considers the sampled-data control problem for the
continuous process described by the state space equation

dvðtÞ
dt

¼ AvðtÞ þ B1xðtÞ þ B2uðtÞ ð1Þ

and the output equation

yðtÞ ¼ C2vðtÞ; ð2Þ
where y(t), v(t), u(t), x(t) are output, state, control and
disturbance vectors of the dimensions n�1, p�1, m�1,
l�1, respectively, and A, B1, B2, C2 are constant matrices of
appropriate size.

(2) Assume that the process (1), (2) is controlled by the digital
computer described by a linearized model

ξk ¼ yðkTÞ; ðk¼ 0; 71;…Þ; ð3Þ

α0ψk þ…þ αqψk−q ¼ β0ξk þ…þ βqξk−q; ð4Þ

uðtÞ ¼ hðt−kTÞψk; kToto ðkþ 1ÞT : ð5Þ
In Eqs. (3)–(5), the quantity T40 is the sampling period, αi, βi
are constantm�m andm�nmatrices, respectively. Moreover,

in (5), h(t) is a piecewise smooth function defining the form of
the control impulses [23,20].

(3) Eq. (4) is called discrete controller equation. Introduce the
backward shift operator ζ¼ e−sT [1], then the control algorithm
can be written in the form

αðζÞψk ¼ βðζÞξk;
where αðζÞ; βðζÞ are polynomial matrices of the form

αðζÞ ¼ α0 þ α1ζ þ⋯þ αqζ
q; βðζÞ ¼ β0 þ β1ζ þ⋯þ βqζ

q:

Further on, the polynomial pair ðαðζÞ; βðζÞÞ is called discrete
controller, or shortly controller. The controller ðαðζÞ; βðζÞÞ is
called causal, when

det α0≠0:

As known, in practice only causal controllers could be realized
in real time. For a causal controller, the rational matrix

WdðζÞ ¼ α−1ðζÞβðζÞ
is always defined, which is called its transfer matrix.

(4) Further on, the differential-difference equation system
(1)–(5) is called the system S. As in [6,8,21], the system S is
called stable, when for x(t)¼Ol1, where Onm is the n�m zero
matrix, and arbitrary initial conditions for t40, k40 an
estimate

∥vðtÞ∥oCve−δt ; ∥uðtÞ∥oCue−δt ; ∥ψk∥oCψe−δkT

takes place, where ∥ � ∥ is the Euclidean norm and Cv; Cu; Cψ ; δ
are positive constants, and δ can be chosen independently of
the initial conditions.

(5) Below we consider the k�1 vector

zðtÞ ¼ C1vðtÞ þ DuðtÞ ð6Þ
as output of the system S, where C1, D are constant matrices.
Let the system S be stable, and the input signal should be the
transition result of a d�1 vector of centered white noise
through a stable continuous input filter with transfer matrix
ΦðsÞ. Then, as follows from [20,21], after finishing the transient
processes, the output z(t) is a centered periodically non-
stationary process denoted by z∞ðtÞ, and its variance dz(t)¼
dz(t+T) is determined by the formula

dzðtÞ ¼
1
2πj

Z j∞

−j∞
tr½W′zxð−s; tÞWzxðs; tÞΦðsÞΦ′ð−sÞ� ds; ð7Þ

where j¼
ffiffiffiffiffiffi
−1

p
, tr means the trace of a matrix, and the prime

indicates the transposition operation. In formula (7),
Wzxðs; tÞ ¼Wzxðs; t þ TÞ is the parametric transfer matrix
(PTM) of the system S from input x(t) to output z(t). Formula
(7) can be found in [21], or may be derived directly from
relations (88) and (89) in Section 5. The mean variance of the
output z∞ðtÞ over one period dz is determined by

dz ¼
1
T

Z T

0
dzðtÞ dt ¼

1
2πj

Z j∞

−j∞
tr½AzxðsÞΦðsÞΦ′ð−sÞ� ds; ð8Þ

where

AzxðsÞ ¼
1
T

Z T

0
W′zxð−s; tÞWzxðs; tÞ dt: ð9Þ

(6) Using the above concepts, the following generalized
H2�optimization problem can be formulated: Generalized
H2�optimization problem: Let the matrices A, B1, B2, C1, C2,
D, the sampling period T, the function h(t) and the transfer
matrix of the input filter ΦðsÞ be given. Moreover, let the
system S be stabilizable. Find a causal stabilizing controller
ðα0ðζÞ; β0ðζÞÞ, for which the mean variance dz takes the
minimal value.
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