Accepted Manuscript

Bioelectricity generation in continuously-fed microbial fuel cell: Effects of anode electrode material and hydraulic retention time

Dilek Akman, Kevser Cirik, Sebnem Ozdemir, Bestamin Ozkaya, Ozer Cinar

PII: S0960-8524(13)01534-4

DOI: http://dx.doi.org/10.1016/j.biortech.2013.09.102

Reference: BITE 12467

To appear in: Bioresource Technology

Please cite this article as: Akman, D., Cirik, K., Ozdemir, S., Ozkaya, B., Cinar, O., Bioelectricity generation in continuously-fed microbial fuel cell: Effects of anode electrode material and hydraulic retention time, *Bioresource Technology* (2013), doi: http://dx.doi.org/10.1016/j.biortech.2013.09.102

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Bioelectricity generation in continuously-fed microbial fuel cell: Effects of anode electrode material and hydraulic retention time

Dilek AKMAN^a, Kevser CIRIK^{b,*}, Sebnem OZDEMIR^a, Bestamin OZKAYA^c, Ozer CINAR^{b,d}

^a Department of Bioengineering and Sciences, Kahramanmaras Sutcu Imam University.

Kahramanmaras 46100, Turkey

^b Department of Environmental Engineering, Kahramanmaras Sutcu Imam University, Kahramanmaras 46100, Turkey

^c Department of Environmental Engineering, Yıldız Technical University, Istanbul, Turkey

^d Biological Sciences and Bioengineering Program, International University of Sarajevo, Bosnia and Herzegovina

*Corresponded author: kewss_@hotmail.com

Abstract

The main aim of this study is to investigate the bioelectricity production in continuously-fed dual chambered microbial fuel cell (MFC). Initially, MFC was operated with different anode electrode material at constant hydraulic retention time (HRT) of 2 d to evaluate the effect of electrode material on electricity production. Pt electrode yielded about 642 mW/m² power density, which was 4 times higher than that of the MFC with the mixed metal oxide titanium (Ti-TiO₂). Further, MFC equipped with Pt electrode was operated at varying HRT (2-0.5 d). The power density generation increased with decreasing HRT, corresponding to 1313 mW/m² which was maximum value obtained during this study. Additionally, decreasing HRT form 2 d to 0.5 d resulted in increasing effluent dissolved organic carbon (DOC) concentration from 1.92 g/L to 2.23 g/L, corresponding to DOC removal efficiencies of 46% and 38%, respectively.

Download English Version:

https://daneshyari.com/en/article/7080226

Download Persian Version:

https://daneshyari.com/article/7080226

Daneshyari.com