European Journal of Control 23 (2015) 36-47

Contents lists available at ScienceDirect

European
Journal
of Control

European Journal of Control

journal homepage: www.elsevier.com/locate/ejcon

Temporal stabilizability and compensatability of time-varying linear
discrete-time systems with white stochastic parameters

@ CrossMark

L. Gerard Van Willigenburg **, Willem L. De Koning"”

@ Systems & Control Group of Wageningen University, P.O. Box 17, 6700 AA Wageningen, The Netherlands
b Department of Mathematics of Delft University of Technology, Kroeskarper 6, Leiden, The Netherlands

ARTICLE INFO

Article history:

Received 13 June 2014

Received in revised form

8 October 2014

Accepted 13 January 2015
Recommended by E. Costa
Available online 3 February 2015

Keywords:

Time-varying linear discrete-time systems
Multiplicative white noise

Temporal stabilizability

Temporal compensatability

Temporal linear system structure

ABSTRACT

This paper reveals that apart from changes of system structure vital system properties such as stabilizability
and compensatability may be lost temporarily due to the stochastic nature of system parameters. To that end
new system properties called temporal mean-square stabilizability (tms-stabilizability) and temporal mean-
square compensatability (tms-compensatability) for time-varying linear discrete-time systems with white
stochastic parameters (multiplicative white noise) are developed. When controlling such systems by means
of (optimal) state feedback, tms-stabilizability identifies intervals where mean-square stability (ms-stability) is
lost temporarily. This is vital knowledge to both control engineers and system scientists. Similarly, tms-
compensatability identifies intervals where ms-stability is lost temporarily in case of full-order (optimal)
output feedback. Tests explicit in the system matrices are provided to determine each temporal system
property. These tests compute measures of the associated temporal system properties. Relations among the
new system properties as well as relations with associated existing system properties are investigated and
established. Examples illustrating principal applications and practical importance are provided.

© 2015 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Research performed during the last decade showed that the
structure of time-varying linear systems may change or almost
change [28-32]. These changes of structure cause and explain
differences between reachability and controllability and dually
observability and reconstructability. They lead naturally to the
definition of temporal linear system structure and associated tem-
poral properties like temporal controllability and reconstructability.
These temporal properties reveal time intervals where the asso-
ciated ordinary system properties are lost temporarily. Obviously
this is vital knowledge to control engineers and system scientists.

In continuous-time the intervals and associated changes of
structure are detected by the differential Kalman decomposition
[28,29]. In discrete-time they are detected by the j-step, k-step
Kalman decomposition [30]. If controllability is lost temporarily
over an interval, it is important to check whether or not stabiliz-
ability is lost temporarily over that interval. Developing and
verifying temporal stabilizability was done in [31,32]. Dually
temporal reconstructability and detectability were also developed
and verified in these papers. These important, practical develop-
ments have sometimes been criticized because of their
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dependence on the selected state-vector norm. Recently it was
explained in [33] that this dependence is inevitable when analysis
is restricted to finite time-intervals. Also sensible choices of the
state-vector norm were presented and discussed in [33].

This paper reveals that apart from changes of system structure, the
white stochastic nature of system parameters can cause temporal loss of
vital system properties, notably stabilizability and compensatability i.e.
the ability to stabilize a system by means of state and output feedback
respectively. To that end this paper extends temporal properties that
have been introduced for time-varying linear discrete-time systems
with deterministic parameters to systems having white stochastic
parameters. Also a new temporal system property is introduced called
temporal compensatability. Ordinary compensatability was introduced
because separability and duality between estimation and control are
lost if system parameters become stochastic [9]. If system parameters
are deterministic, compensatability is equivalent with stabilizability
plus detectability, otherwise it is stronger. This paper reveals that, even
if the parameters are deterministic, temporal compensatability is still
stronger than temporal stabilizability plus temporal detectability.
Roughly speaking this is because the time needed for LQG compensa-
tors to start convergence is about the sum of the times needed by the
state estimator and controller to start convergence.

Discrete-time linear systems with white stochastic parameters
offer a way to design non-conservative robust digital feedback con-
trollers [6,7,38,39]. These controllers may be perturbation feedback
controllers based on linearized dynamics about possibly optimal state
trajectories associated with a non-linear system. The perturbation
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feedback controllers as well as the possibly optimal state trajectories
may be computed off-line. This enables the handling of a wide range
of constraints and optimization criteria offering a wide range of
application [5]. The linearized dynamics used for perturbation feed-
back controller design are generally time-varying. This is one impor-
tant reason to study time-varying linear discrete-time systems with
white stochastic parameters (multiplicative white noise). Other rea-
sons are that discrete-time system parameters may be white due to
stochastic sampling, randomly varying delays or Markovian jumps
of system structure [4,11,17-19,22,24-26]. Optimal state and output
feedback control of linear systems with white stochastic parameters
has been addressed in [8,10,14-16,23,27].

The authors are aware of one other development that considers
stability and stabilizability, but not compensatability, over finite time
intervals. Two properties called finite-time stability and stabilizabil-
ity have been introduced and investigated [1-3]. Like our temporal
system properties they apply to finite time-intervals. Finite-time
stability and stabilizability consider a state-vector norm over the full
finite time-interval whereas temporal stability and stabilizability
consider a state-vector norm at the initial and final time of the
interval only. By shifting the initial time of the interval towards the
final time however, a similar picture of closed loop stability over the
full finite time interval is obtained [31,32]. On the other hand
temporal stability and stabilizability consider arbitrary initial condi-
tions whereas finite-time stability and stabilizability are defined for
fixed initial conditions only. Moreover finite-time stability and
stabilizability computations concern LMI's instead of standard LQ
computations required by temporal stability and stabilizability when
system parameters are deterministic.

To analyze the effect of stochastic parameters on stability, stabiliz-
ability and compensatability of systems the mean-square (ms) of the
state must be considered. Temporal mean-square stabilizability (tms-
stabilizability) identifies temporal loss of closed loop mean-square
stability in case of (optimal) full state feedback. It is presented in
Section 3. Temporal mean-square compensatability (tms-compensat-
ability) does the same in case of (optimal) full-order output feedback
and is presented in Section 4. In both sections important relations
among these new system properties are established. Also relations
with existing system properties, partly relating to linear systems with
deterministic parameters, are established. Examples illustrating these
relations are presented in Section 5. First however Section 2 presents a
semi-industrial example to illustrate the main contribution and prac-
tical importance of the results developed in this paper. Conclusions are
drawn in Section 6 an important one being that tms-stabilizability and
tms-compensatability are most important for feedback control design
based on time-varying linear dynamics with stochastic parameters.
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2. Illustrative example

The new results and temporal system properties will be presented
in the next two sections. In this section the main contribution of this
paper and one of its major applications is illustrated and demonstrated
first. This is done by means of a semi-industrial example.

Example 1. Consider the digital optimal perturbation feedback con-
trol of the “Goddard Rocket” around its optimal trajectory as presented
in [5], Example 2. The example considered here is identical except for
the parameters of the equivalent discrete time-varying linearized
system (EDTVLS) used for digital optimal perturbation feedback
design. These are turned into stochastic parameters using a possibly
time-varying parameter uncertainty measure f; > 0, where i denotes
discrete-time. When p; = =0 the parameters are deterministic at
each time i and the results of Example 2 presented in [32] are
obtained. With increasing g;, parameter uncertainty at time i increases.

Fig. 1 presents values of the temporal mean-square stabilizability
measure pfn”}g(i, 25),i=0,1,..,24 of the closed loop system with full
state feedback over time-interval (i, 25). If the value falls below one,
the system is temporal mean-square stabilizable (tms-stabilizable)
over time-interval (i,25). For clarity the results are plotted using
both a linear and logarithmic scale. Similarly Fig. 2 presents values
of the temporal mean-square compensatability measure %% (i, 25),
i=0,1,.,24 of the closed loop system with full-order output
feedback over time-interval (i,25). Again if the value falls below
one, the system is temporal mean-square compensatable (tms-
compensatable) over time-interval (i, 25). As expected, with incre-
asing constant values of g, i.e. with increasing parameter uncer-
tainty at each time i, tms-stabilizability and tms-compensatability
become worse because their measures increase. Also observe that
tms-stabilizability is far better than tms-compensatability. This
represents the well-known fact that full state feedback is to be
preferred over full-order output feedback. A time-varying uncer-
tainty measure ; may be used to indicate or describe time-varying
levels of model parameter uncertainty. Observe from Figs. 1 and 2
that introducing stochastic parameters, e.g. to promote robustness,
goes at the expense of tms-stabilizability and tms-compensatability.

3. Temporal stabilizability

The possibility of time-varying linear systems with deterministic
parameters to change or almost change structure motivated the
investigation into temporal properties of these systems [28-32]. A
change of structure comes generally with a change of important
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Fig. 1. tms-Stabilizability measures Example 1 for different values of g;.
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