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a b s t r a c t

In this paper, we propose an modified nonlinear extended state observer (ESO) with a time-varying gain
in active disturbance rejection control (ADRC) to deal with a class of nonlinear systems which are
essentially normal forms of general affine nonlinear systems. The total disturbance which includes
unknown dynamics of the system, external disturbance, and unknown part of the control coefficient is
estimated through ESO and is canceled in nonlinear feedback loop. The practical stability for the
resulting closed-loop is obtained. It is shown that the “peaking value” occurred often in the constant
high gain design can be significantly reduced by the time-varying gain approach.

& 2015 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In the past three decades, many control approaches have been
developed to cope with system uncertainty or external disturbances.
Basically, there are two types of strategies to deal with uncertainty.
The first one focuses on the worst case scenario which makes the
controller designed conservative. This can be found in the sliding
mode control and the high gain control, among many others. The
other is first to estimate uncertainty and then cancel the effect of
uncertainty in feedback loop. The latter idea can be found typically in
adaptive control, the internal model principle, and external principle
[21]. However, in adaptive control, the updated parameters are not
always convergent, and the internal and external model principle
requires priority knowledge of dynamics of unknown disturbance.

The active disturbance rejection control (ADRC), as an unconven-
tional design strategy similar to the external model principle [21],
was first proposed by Han in 1998 based on realistic rethinking
about the PID technology that has dominated the control engineer-
ing for almost one century [13]. The uncertainties dealt with by
ADRC are much more complicated. For instance, ADRC can deal with
the coupling between the external disturbances, the system un-

modeled dynamics, and the superadded unknown part of control
input. The most remarkable feature of ADRC is that the disturbance
is estimated, in real time, through an extended state observer and is
canceled in the feedback loop. This reduces significantly the control
energy in practice [32].

In the past two decades, ADRC has been successfully applied to
many engineering control problems as reviewed in hysteresis com-
pensation [7], high pointing accuracy and rotation speed [20],
noncircular machining [26], fault diagnosis [27], high-performance
motion control [23], chemical processes [28], vibrational MEMS
gyroscopes [29,31], tension and velocity regulations in Web proces-
sing lines [14], DC–DC power converter [24], among many others. In
all applications in process control and motion control, compared with
the huge literature of control theory in dealing with uncertainty such
as system un-modeled dynamics [5], external disturbance rejection
[4], and unknown parameters [3], the ADRC has exhibited remarkable
characteristics of independent of mathematical modes like PID-
control; whether it is on high accuracy control of micron grade or
integrated control of very large scale. It is now generally acknowl-
edged that the ADRC is a new control strategy that is capable of
dealing with un-modeled dynamics and external disturbance, regard-
less of nonlinearity, time-variance in systems. For instance, by the
internal model principle for output regulation, it requires the avail-
ability of disturbance dynamics whereas by ADRC, only upper bound
of external disturbance is needed.

The design of ADRC can be split into three steps. The first step is to
design a tracking differentiator (TD). Since in many practical applica-
tions, we know only reference signal v itself, while in feedback, we

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ejcon

European Journal of Control

http://dx.doi.org/10.1016/j.ejcon.2015.02.002
0947-3580/& 2015 European Control Association. Published by Elsevier Ltd. All rights reserved.

☆This work was partially supported by the National Natural Science Foundations
of China (Nos. 61403242, 11401360, and 11471201) and the Fundamental Research
Funds for the Central University (No. GK201402003).

n Corresponding author at: Academy of Mathematics and Systems Science,
Academia Sinica, Beijing 100190, China.

E-mail address: bzguo@iss.ac.cn (B.-Z. Guo).

European Journal of Control 23 (2015) 62–70

www.sciencedirect.com/science/journal/09473580
www.elsevier.com/locate/ejcon
http://dx.doi.org/10.1016/j.ejcon.2015.02.002
http://dx.doi.org/10.1016/j.ejcon.2015.02.002
http://dx.doi.org/10.1016/j.ejcon.2015.02.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2015.02.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2015.02.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejcon.2015.02.002&domain=pdf
mailto:bzguo@iss.ac.cn
http://dx.doi.org/10.1016/j.ejcon.2015.02.002


need the derivatives of v. This gives rise to differential tracking
problem. Han initially proposed a noise-tolerance TD to recover the
derivatives of the reference signal v [11]. For general treatment on
differential tracking, we refer to [19] and the references therein. The
second step towards ADRC is to design an “extended state observer”
(ESO) to estimate not only the state of system but also the total
disturbance. The last step is the ESO-based feedback control [10],
which is somehow the separation principle in nonlinear system
control.

The convergence of linear/or nonlinear TD is reported in [8,10,12].
The convergence of linear ESO is available in [30], and very recently,
nonlinear ESO has been studied in [10] where linear ESO is a special
case of the nonlinear ones. It is shown that with an appropriate
choice of nonlinear functions in ESO such as weighted homogeneous
functions can improve the accuracy and reduce the peaking value,
with the same constant high gain [10]. The convergence of linear
ADRC, which is based on linear ESO and linear feedback, is investi-
gated in [15] and the convergence of nonlinear ADRC has been proven
in [9]. In all these works, no matter linear or nonlinear, the ESO uses
constant high gain tuning parameter. However, the constant high gain
tuning parameter causes notorious “peaking value problem” in the
initial time stage. In [6], a saturated function method is applied to
reduce the peaking value but the bound of initial values is assumed
preliminarily.

In this paper, we consider the following nonlinear system:

_xðtÞ ¼ AnxðtÞþBn½f ðt; xðtÞ; ζðtÞ;wðtÞÞþbðtÞuðtÞ�;
_ζðtÞ ¼ f 0ðt; xðtÞ; ζðtÞ;wðtÞÞ;
yðtÞ ¼ CnxðtÞ;

8><
>: ð1:1Þ

where xARn and ζARm are the system states, wAC1ð½0;1Þ;RÞ is
the external disturbance, An; and Bn are defined as

An ¼
0 In�1

0 0

� �
; B>

n ¼ Cn ¼ ð0;0;…;1Þ; ð1:2Þ

f ACðRnþmþ2;RÞ, and f 0ACðRnþmþ2;RmÞ are unknown nonlinear
functions, uðtÞAR is the input (control), and yðtÞ ¼ CnxðtÞ ¼ x1ðtÞ is
the output (measurement). The control coefficient b(t), with
nominal value b0a0, contains some uncertainty.

System (1.1) is quite general. It is actually the normal form of
(nþm)-order affine nonlinear systems with relative degree n.
According to [16], if a general (nþm)-order affine nonlinear system

_χ ¼ϕðχÞþφðχÞu;
y¼ hðχÞ

(

has a relative degree n, then it can be transformed into the form

_x ¼ AnxþBn½f ðx; ζÞþbðx; ζÞu�;
_ζ ¼ f 0ðx; ζÞ;
y¼ Cnx:

8><
>:
System (1.1) may also arise in models of mechanical and electro-
mechanical systems. Examples can be found in [20,24,26,32,31,28].

We design a nonlinear ESO with time-varying gain for system
(1.1) as follows:

_̂x1ðtÞ ¼ x̂2ðtÞþ
1

rn�1ðtÞ g1ðr
nðtÞðδðtÞÞ;

_̂x2ðtÞ ¼ x̂3ðtÞþ
1

rn�2ðtÞ g2ðr
nðtÞδðtÞÞ;

⋮
_̂xnðtÞ ¼ x̂nðtÞþ1ðtÞþgnðrnðtÞδðtÞÞþb0uðtÞ;
_̂xnþ1ðtÞ ¼ rðtÞgnþ1ðrnðtÞδðtÞÞ;

8>>>>>>>>>><
>>>>>>>>>>:

ð1:3Þ

where δðtÞ ¼ x̂1ðtÞ�yðtÞ, and r(t) is the time-varying gain to be
increased gradually. When rðtÞ � 1=ε, (1.3) is reduced to the constant
high gain nonlinear ESO in [10]. The aim of ESO is to estimate the

states x1; x2;…xn and total disturbance

xnþ1ðtÞ9 f ðt; xðtÞ; ζðtÞ;wðtÞÞþ½bðtÞ�b0�uðtÞ; ð1:4Þ
which is also called the extended state.

The high gain observer has been studied extensively. A recent
work is reviewed in [18]. Observer with time-varying gain (updated
gain or dynamic gain) is also used in [1,2,22], where the gain is a
dynamics determined by some nonlinear function related to control
plant. The choice of our time-varying gain is flexible. Basic require-
ment is that the time-varying gain should grow from a small value
to maximal value to reduce the peaking value. The major difference
between [1,2] and this paper is that there is no estimation for
uncertainty in these works. Only in [22], a constant unknown
nominal control value is estimated on stabilization for an affine
nonlinear system. The estimation/cancelation nature of ADRC makes
it very different.

The main contribution of this paper is that we introduce a type
of time varying-gain in observer (1.3) to achieve peaking value
reduction observed by the constant high gain in [10]. In addition,
the nonlinear functions in (1.1) can be Hölder continuous rather
than Lipschitz continuous assumed in our previous works [10,9].

We proceed as follows. In Section 2, we give the main results of
ESO (1.3) based feedback control. Some numerical simulations are
presented for illustrations. The proof for the main results is presented
in Section 3.

2. Main results

Let us first recall the whole process of ADRC for system (1.1).
The first part of ADRC is tracking differentiator (TD). For a reference
signal v, we use the following TD to estimate its derivatives [11]:

_z1ðtÞ ¼ z2ðtÞ;
⋮

_znðtÞ ¼ znþ1ðtÞ;
_znþ1ðtÞ ¼ �ρnþ1k1ðz1ðtÞ�vðtÞÞ�ρnk2z2ðtÞ�⋯�ρknþ1znþ1ðtÞ:

8>>>><
>>>>:

ð2:5Þ
By Theorem 3.1 of [11], if suptA ½0;1ÞjvðiÞðtÞjo1; i¼ 1;2;…;n, and
the following matrix is Hurwitz:

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

�k1 �k2 �k3 ⋯ �kn

0
BBBBBB@

1
CCCCCCA

then for any a40, j ziðtÞ�vði�1ÞðtÞjrM=ρ, i¼ 1;2;…;nþ1 uni-
formly in tA ½a;1Þ, where M is a ρ-independent constant. It is
noted that if the derivatives of v are available, we just let zi ¼ vði�1Þ.

Since the TD part is relatively independent of other two parts of
ADRC, we do not couple TD in the closed loop; instead, we use zi
directly in the feedback loop.

The second part of ADRC is the ESO (1.3) that estimates both
state and the total disturbance of system (1.1).

Suppose that we have obtained estimates for both state and
total disturbance. We then use estimation/cancelation strategy to
design the ESO-based output feedback control as follows:

uðtÞ ¼ 1
b0

ðu0ðx̂1ðtÞ�z1ðtÞ;…; x̂nðtÞ�znðtÞÞþznþ1ðtÞ� x̂nþ1ðtÞÞ; ð2:6Þ

where x̂nþ1 is used to compensate the total disturbance xnþ1 and
u0 is the nominal control to be specified later. The objective of the
control is to make the error ðx1ðtÞ�z1ðtÞ; x2ðtÞ�z2ðtÞ…; xnðtÞ�znðtÞÞ
be convergent to zero as time goes to infinity in the prescribed
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