Bioresource Technology 139 (2013) 363-374

Contents lists available at SciVerse ScienceDirect

Bioresource Technology

journal homepage: www.elsevier.com/locate/biortech

Review Enhanced biological phosphorus removal and its modeling for the activated sludge and membrane bioreactor processes

M.F.R. Zuthi^a, W.S. Guo^a, H.H. Ngo^{a,*}, L.D. Nghiem^b, F.I. Hai^b

^a Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia ^b Strategic Water Infrastructure Laboratory, School of Civil Mining and Environmental Engineering, Faculty of Engineering, University of Wollongong, NSW 2522, Australia

HIGHLIGHTS

• MBR's system and operational constraints may affect phosphorus removal efficiency.

• ASM-based models for P-removal need to be modified for a particular MBR system.

• Impact of P-removal kinetics on sludge properties should be considered in modeling.

ARTICLE INFO

Article history: Received 17 February 2013 Received in revised form 8 April 2013 Accepted 10 April 2013 Available online 18 April 2013

Keywords: Enhanced biological phosphorus removal Membrane bioreactor Mathematical modeling

ABSTRACT

A modified activated sludge process (ASP) for enhanced biological phosphorus removal (EBPR) needs to sustain stable performance for wastewater treatment to avoid eutrophication in the aquatic environment. Unfortunately, the overall efficiency of the EBPR in ASPs and membrane bioreactors (MBRs) is frequently hindered by different operational/system constraints. Moreover, although phosphorus removal data from several wastewater treatment systems are available, a comprehensive mathematical model of the process is still lacking. This paper presents a critical review that highlights the core issues of the biological phosphorus removal. This mini review also successfully provided an assessment of the available models for predicting phosphorus removal in both ASP and MBR systems. The advantages and limitations of the existing models were discussed together with the inclusion of few guidelines for their improvement.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Activated sludge process

Controlling phosphorous (P) discharge has become a global issue in preserving surface water quality since it has been identified as the key element responsible for eutrophication in the aquatic environment. The modification of activated sludge systems for phosphorus removal (P-removal) was notably introduced through the enhanced biological phosphorus removal (EBPR) system in the late 1950s (Wentzel et al., 2008). Since then, several modifications to the EBPR systems have been proposed in the literature (Peng and Ge, 2011; Yuan and Oleszkiewicz, 2011). In the EBPR treatment system, the phosphate accumulating organisms (PAOs) of the bacterial community are enriched to accumulate large quantities of polyphosphate (poly-P) in their cells and thus enhance the biological phosphorus removal (bio-P-removal) from wastewater. The PAOs have a strict requirement of cyclic anaerobic, anoxic and aerobic conditions which consequently makes the bio-P-removal process from wastewater a more complex one compared to the nitrogen (N) and chemical oxygen demand (COD) removal.

Biological nutrient removal (BNR) efficiencies of activated sludge processes (ASPs) and the improved variations thereof suffer from critical sensitivity to various system parameters such as sludge retention time (SRT), hydraulic retention time (HRT), alkalinity and pH, temperature and various other factors. Since MBR is a modified version of ASP with the secondary clarifier of conventional ASP replaced by the membrane separator, it also tends to suffer from the similar bioprocess system constraints of ASPs affecting its nutrient removal efficiency. Although a better overall nutrient removal efficiency of MBRs over that of the ASPs has been reported (Daigger et al., 2010; Lesjean et al., 2003), the typically longer SRT and higher mixed liquor suspended solids (MLSS) concentration frequently hinder the P-removal efficiency of the MBR treatment system. Application of MBR systems in order to meet effluent quality targets for P-removal is possible if the biological processes particularly related to P-removal could be completely understood and linked to other biological process parameters.

^{*} Corresponding author. Address: University of Technology, Sydney School of Civil and Environmental Engineering, Center for Technology in Water and Wastewater, Building 2, Level 5, No. 1 Broadway, Sydney NSW 2007, Australia. Tel.: +61 2 95142745; fax: +61 2 95142633.

E-mail address: h.ngo@uts.edu.au (H.H. Ngo).

^{0960-8524/\$ -} see front matter @ 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.biortech.2013.04.038

Nomenclature

A_2N	anaerobic–anoxic/nitrifying	
A_2O	anaerobic-anoxic-oxic	
AEI	aerobic/extended-idle	
ASM	activated sludge model	
ASP	activated sludge process	
bio-P	biological phosphorus	
BNR	biological nutrient removal	
BNRAS	BNR system	
BNRM1	BNR model 1	
b _{PAO}	endogenous respiration rate of X _{PAO}	
b _{PP_PO4}	rate constant for lysis of $X_{\rm PP}$	
b _{Stor_VFA} C	rate constant for respiration of X _{Stor} carbon	
CAS	conventional activated sludge	
COD	chemical oxygen demand	
DPAOs	denitrifying PAOs	
EBPR	enhanced biological phosphorus removal	
EPS	extra-cellular polymeric Substances	
F/M	food to microorganism ratio	
FCASM1	fully coupled ASM1	
$f_{\rm Gly_PAO,M}$	maximum ratio of X_{GLY}/X_{PAO}	
fpp_pao,ma	$_{\rm hx}/{\rm K}_{\rm max}$ maximum ratio of $X_{\rm PAO,PP}/X_{\rm PAO}$	
	, fraction of $S_{\rm I}$ generated in $X_{\rm PAO}$ decay	
$f_{\rm XU_PAO,lys}$	s fraction of $X_{\rm I}$ generated in $X_{\rm PAO}$ decay	
GAOs	glycogen accumulating organisms	
HRT	hydraulic retention time	
K ₂ PO ₄	dipotassium Phosphate	
K _{Alk,PAO}		
K _{fGly_PAO}	half-saturation coefficient for X_{GLY}/X_{PAO}	
	half-saturation coefficient for X_{PHA}/X_{PAO}	
	saturation constant for X_{PHA}/X_{PAO} _{plim} half-saturation coefficient for X_{PHA}/X_{PAO} (P limit)	
$K_{\rm fStor_PAO}$ $K_{\rm Gly,PAO}$	half-saturation coefficient for X_{GLY}	
KLOD DAG	half-inhibition coefficient for $X_{\text{PP}}/X_{\text{PAO}}$	
K _{1,1PP} _PAO	half-saturation coefficient for $S_{\rm NH}$	
K _{NOx,PAO}		
K _{O2,PAO}	half-saturation coefficient for S_0	
	half-saturation coefficient for X _{PHA}	
	_{ys} half-saturation coefficient for <i>X</i> _{PHA} lysis (phosphorus	
	continuity)	
$K_{\text{PO4,PAO,nut}}$ half-saturation coefficient for S_{PO4} as nutrient (X_{PAO}		
growth)		
$K_{PO4,PAO,\iota}$	half-saturation coefficient for S_{PO4} uptake (X_{PP} stor-	
17	age	
K _{PP,PAO}	half-saturation coefficient for $X_{\rm PP}$	
	maximum ratio of X_{PP}/X_{PAO}	
K _{SB,PAO} V	half-saturation coefficient for $S_{\rm S}$ half-saturation coefficient for $S_{\rm A}$	
K _{vfa,pao} MBR	membrane bioreactor	
MEBPR	membrane EBPR	
MLSS	mixed liquor suspended solids	
MLVSS	mixed liquor volatile suspended solids	
m _{PAO,An}	maintenance rate for X_{PAO} (anaerobic)	
m _{PAO,Ax}	maintenance rate for X_{PAO} (anoxic)	
$m_{\rm PAO,O2}$	observed oxygen consumption for maintenance	
m _{PAO,Ox}	maintenance rate for X_{PAO} (aerobic)	
m _{PAO,Stor}	rate constant for respiration of X _{PHA}	
N	nitrogen	
N_2O	nitrous oxide	
$n_{\rm bPP_PO4}$	reduction factor for anoxic lysis of X _{PP}	
	nitrification denitrification EBPR	
NITs	nitrifiers	
$n_{\rm KNOx}$	reduction factor for $K_{\rm NO}$ for $X_{\rm PP}$ formation	
$n_{\rm KO2}$	reduction factor for $K_{O2,PAO}$ for X_{PP} formation	

	naturation factor for anomic and anonone nonination of	
n _{mPAO}	reduction factor for anoxic endogenous respiration of X_{PAO}	
	r reduction factor for anoxic respiration of X _{PHA}	
$NO_{(x)}$	nitrite/nitrate	
NO ₃ -N	nitrate-N	
n _{qPAO}	nearly plug flow MBR reduction factor for denitrifying processes	
n_{iPAO}/S_{PA}		
	reduction factor for anoxic growth of X_{PAO}	
OHOs P	ordinary heterotrophic organisms phosphorus	
PAOs	phosphate accumulating organisms	
PHA	polyhydroxyalkanoates	
PHB	polyhydroxybutyrate	
PO ₄ -P poly-P	phosphate-P polyphosphate	
q _{Glv}	rate constant for formation of X_{GLY}	
$q_{\rm PAO,PO4_}$	$_{PP}/q_{pp}$ rate constant for storage of X_{PP}	
$q_{\rm PAO,SB_St}$	rate constant for S_A uptake rate (X_{PHA} storage)	
q _{pao,vfa_}	$_{PHA,An}$ rate constant for S_A uptake rate (X_{PHA} storage)	
	(anaerobic) _{PHA,Ax} rate constant for S _A uptake rate (X _{PHA} storage) (an-	
YPAU,VFA_	Oxic)	
	Stor rate constant for S_A uptake rate (X_{PHA} storage)	
-	rate for X_{PHA} consumption (X_{PAO} growth) fermentation product (volatile fatty acids)	
S _A S _{ALK}	alkalinity (HCO_3^-)	
SBMBR		
SBR	sequencing batch Reactor	
SMP	soluble microbial products	
S _{N2} S _{NH}	dissolved nitrogen gas ammonium and ammonia nitrogen (NH4 + NH3)	
S _{NO}	nitrate and nitrite $(NO_3 + NO_2)$ (considered to be NO ₃	
	only for stoichiometry)	
S _o	dissolved oxygen	
S _{PO4} SRT	soluble inorganic phosphorus sludge retention time	
S	soluble biodegradable organics	
SSMBR	sponge submerged MBR	
TOC	total organic carbon	
TP TSS	total phosphorus total suspended solids	
VFA	volatile fatty acid	
WWTP	wastewater treatment plant	
$X_{\rm GLY}$	stored glycogen in PAOs	
X _I X _{MeOH}	particulate undegradable organics metal hydroxide compounds	
X_{MeOH}	metal phosphate compounds	
X _{PAO}	phosphorus accumulating organisms	
$X_{\rm PHA}$	storage compound in PAOs	
X _{PP} X _{STO}	stored polyphosphates in PAOs storage compound in OHOs	
Y_{H2}	yield for OHS growth(aerobic)	
	P ATP produced per NADH or P/O ratio	
Y _{PAO}	yield for X _{PAO} growth per X _{PHA}	
Y _{PAO,Ax}	yield for X_{PAO} growth per X_{PHA} (anoxic)	
Y _{PAO,Ox} Y _{PAO_Gly,} a	yield for X_{PAO} growth per X_{PHA} (aerobic) Ax yield for formation of X_{GLY} (anoxic)	
Y _{PAO Glv}	f_{Dx} yield for formation of X_{GLY} (aerobic)	
Y _{PAO_PP,A}	x yield for X_{PP} formation per X_{PAO} (anoxic)	
Y _{PAO_PP,O}		
Y _{PHA_PAO}	Ax yield for consumption of <i>X</i> _{PHA} per <i>X</i> _{PAO} formation (an- oxic)	
$Y_{PHA_PAO,OX}$ yield for consumption of X_{PHA} per X_{PAO} formation		
	(aerobic)	

Download English Version:

https://daneshyari.com/en/article/7082176

Download Persian Version:

https://daneshyari.com/article/7082176

Daneshyari.com