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a b s t r a c t

This paper elaborates a new version of extended Kalman filtering (EKF) for state estimation in chemical
nonlinear continuous-discrete stochastic systems. Such a state estimation always compounds real
measurements of some system's variables (depending on the utilized technology) with computation of
remaining (not measurable) parameters by means of appropriate filtering algorithms. Here, we consider
the continuous-discrete EKF and show that its quality is raised by using the adaptive sixth-order nested
implicit Runge–Kutta (NIRK) method of Gauss type with automatic local and global error controls.
Through case studies the new filtering technology is compared to another EKF implementation based on
an adaptive ODE solver but with the sole local error control. Our numerical results exhibit that the
designed state estimation algorithm not only outperforms the earlier published adaptive EKF method,
but also resolves the so-called “EKF failure” case reported recently.

& 2014 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduciton

Mathematical models in chemical research and industrial
applications are often presented in the form of stochastic differ-
ential equation (SDE)

dxðtÞ ¼ FðxðtÞ;uðtÞÞ dtþGðxðtÞ;uðtÞÞ dwðtÞ ð1Þ

where xðtÞARn1 is the n1-dimensional vector of system's state
at time t, uðtÞARn2 is the measurable input at time t, F : Rn1 �
Rn2-Rn1 is a nonlinear function representing the chemical reac-
tion kinetics, GðxðtÞ;uðtÞÞ is a matrix of dimension n1 � q and
fwðtÞ; t40g is a Brownian process with square diffusion matrix
Q ðtÞZ0 of the size q. We point out that chemical process models
are based on conservation laws and described conventionally by
ordinary differential equations (ODEs), whereas the stochastic
term in SDE (1) simulates possible random disturbances and
uncertainties in the reaction and also a plant-model mismatch
always existing in reality.

Here, we deal with mathematical models of the form (1) where
the measurable input u(t) is assumed to be a known function of
time. In other words, we consider that its value is known at any
time instant. If the discussed chemical process model does not
correspond to a particular situation, i.e. when the input of
chemical system is unknown and should be measured in real

experimentation, one can treat such a chemical system by aug-
menting the system's state with the unknown input entries. In this
case, the input u(t) is evaluated as a part of the augmented state
vector x(t). Then, removing the term u(t) from all the below
formulas allows the augmented chemical model to be estimated
by the designed method as well.

The initial state x0 of chemical process (1) is supposed to be a
random variable. More precisely, x0 �N ðx0;Π0Þ with Π0Z0,
where the notation N ðx0;Π0Þ stands for the normal distribution
with mean x0 and covariance Π0.

The task of state estimation in chemical system (1) always
compounds real measurements of measurable system's variables
(depending on the utilized technology) with computation of
remaining (not measurable) parameters by means of an appro-
priate nonlinear filtering algorithm. It is usually assumed that
some observation information arrives discretely and in equidistant
intervals of size δ¼ tk�tk�1. This time interval δ is called the
sampling period (or waiting time) in filtering theory. The relation
of observations yk to the state vector xk in chemical system (1) is
fixed by the formula

yk ¼ hðxkÞþvk; kZ1; ð2Þ
where k stands for a discrete time index (i.e. xk means xðtkÞ),
ykARm is the information available at time tk, h : Rn1-Rm is a
linear or nonlinear function and the measurement noise vk is a
zero-mean Gaussian white-noise process with covariance matrix
Rk40. We emphasize that formula (2) covers both linear and
nonlinear observation models. Also, all realizations of w(t), vk and
x0 are assumed to be taken from mutually independent Gaussian
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distributions. Thus, the continuous-discrete stochastic state-space
model (1) and (2) is best suited for state estimation in chemical
systems and widely used in chemistry research and industrial
applications (see, for instance, [52,50,8,15,16,20,43–45]).

Concerning state estimation algorithms, we have to remark
that, at present, there exist a great variety of different methods
starting from a rigorous probabilistic approach solving Kolmogor-
ov's (Fokker–Planck's) forward equation (as discussed, for insta-
nce, in [19,38]) till approximate approaches including various
nonlinear modifications and implementations of the well-known
Kalman filter (see [37,48,49,23,22,17,40,1–3,10,21,30,43–46]) as
well as optimization based approaches usually referred to as the
moving horizon estimation (studied in [18,42,15,16,43] and so on).
Undoubtedly, the extended Kalman filter (EKF) still remains
among the most popular and widely used numerical techniques
for practical state estimation in nonlinear stochastic systems
because of its implementation simplicity and good performance.
It originates from the optimum state estimation theory developed
by Kalman [25] in linear discrete-time stochastic state-space
systems. The progress made in the Kalman filtering by now has
resulted in a number of fast, numerically stable and many other
algorithms (see, for instance, [37,24,12,11,38,47]).

Despite EKF's popularity, this method has been criticized on
its performance for offline models and industrial applications
in chemical research by Wilson et al. [52], Soroush [50], Dochain
[8], Haseltine and Rawlings [15,16], Jørgensen [20], Rawlings and
Bakshi [43], Romanenko and Castro [44], Romanenko et al. [45].
For example, Haseltine and Rawlings [15,16] report that their
EKF fails for two types of chemical reactors meaning that
wrong steady-states are calculated and negative concentrations
are observed after convergence, which are of no physical sense.
Jørgensen [20] claims that his EKF is not able to reconstruct offset
free concentrations in the Van der Vusse reaction scenario on
the basis of temperature measurements, only. One more difficulty
mentioned in relation to the EKF is that it may fail for nonlinear
systems with infrequent observations. So, Soroush [50] writes:
“In the chemical/petrochemical and biochemical industries, there
are many processes wherein the choice of sampling rate is limited
by the availability of the output measurements. For example,
composition analyzers such as gas chromatographs have a cycle
time say 5–10 min compared to a desired control interval of say
0.1–1 min. If the control interval is increased to match the
availability of measurements then control performance deterio-
rates significantly.”

Recently, Kulikov and Kulikova [30] presented a way to resolve
some cases of the “EKF failure” by means of adaptive ODE solvers
with automatic error control. Therefore, the task of searching for
the most appropriate ODE solver in the frame of EKF technology
has arisen. We emphasize that the formulated task corresponds
well to practitioners' expectations in control theory, as, for
instance, stated in Arasaratnam et al. [3]. Below, we contribute
to the research topic announced in the cited paper and conduct a
detailed theoretical and numerical study of two efficient ODE
solvers. The first one is grounded in the embedded pair of explicit-
first-stage singly diagonal implicit Runge–Kutta (ESDIRK) methods
of orders 3 and 4 and published in Kristensen et al. [26]. It is
further denoted as ESDIRK3(4). The second ODE solver is hybrid
and designed here on the basis of two different schemes for
computing the predicted state expectation and the predicted error
covariance matrix. The predicted state mean is calculated by an
embedded Runge–Kutta pair of orders 4 and 6. The higher-order
method in this pair belongs to the family of nested implicit Runge–
Kutta (NIRK) formulas of Gauss type. These NIRK schemes are
introduced and studied by Kulikov and Shindin [33], Kulikov
[27,29] at large. The predicted error covariance matrix is deter-
mined by the corresponding part of the numerical scheme

designed and explored in Mazzoni [39], but it is modified for a
square-root implementation of the EKF in this paper. So, the latter
hybrid ODE solver is further referred to as NIRK6(4)M2. In the
next section, we present the ESDIRK3(4) and NIRK6(4)M2 based
EKF variants with all necessary implementation particulars for a
detailed theoretical and numerical comparison and study.

It is worthwhile to remark that our NIRK6(4)M2 method
distinguishes fromwhat was used and published earlier in Kulikov
and Kulikova [30]. First, the embedded NIRK pair of orders 2 and
4 with the global error control from Kulikov [29] was applied for
the simultaneous solution of the state mean and error covariance
equations in the earlier published research. This resulted in an
accurate but time-consuming state estimator where the authors
solved linear systems of size n1ðn1þ3Þ=2 with n1 standing for the
dimension of the state vector. The global error was controlled in all
entries of the moment differential equations. Here, we design
another method that treats the state mean and error covariance
equations, separately. The global error control is also implemented
in numerical integration of the first moment differential equation,
only. All this reduces the cost of NIRK6(4)M2 in comparison to the
earlier published state estimator. Second, Kulikov and Kulikova
[30] studied the standard continuous-discrete EKF technology
whereas the present paper deals with a more stable square-root
implementation of the EKF, as explained in Section 2.3.

At the end of this introduction, we point out that the purpose of
the present paper is not to address the above-mentioned “EKF
failure” phenomena, but to look for a more efficient version of the
EKF, which may be successful in practice. In addition, we expose
that the state estimator designed here works well for offline
chemical models and, hence, may be potentially useful in indus-
trial environment. Any comparison of our EKF technique to other
effective nonlinear state estimation algorithms, as, for example,
particle, unscented and ensemble filters, and its practical testing in
real experimentation are beyond the scope of this paper and
expected in future.

2. Theory and implementation

2.1. Continuous-discrete extended Kalman filter

Frogerais et al. [10] identify two main approaches for imple-
menting the EKF method (namely, the continuous-discrete and
discrete-discrete EKF implementations), and Kulikov and Kulikova
[30] explain that the continuous-discrete EKF is more accurate and
reliable in practice. Therefore, it is most suited for treating the
continuous-discrete stochastic state-space model (1) and (2) aris-
ing often in chemical research and industrial applications. We
restrict ourselves to the latter state estimation technology and
present its implementation particulars, below.

It is well-known from the cited literature that the continuous-
discrete EKF is based on replacement of the predicted values of
state mean and error covariance matrix determined in the time-
update step of the Kalman filtering with the values satisfying the
moment differential equations (MDEs)

dx̂ðtÞ
dt

¼ Fðx̂ðtÞ;uðtÞÞ; ð3aÞ

dPðtÞ
dt

¼ Jðx̂ðtÞ;uðtÞÞPðtÞþPðtÞJT ðx̂ðtÞ;uðtÞÞ

þGðx̂ðtÞ;uðtÞÞQ ðtÞGT ðx̂ðtÞ;uðtÞÞ ð3bÞ

where Jðx̂ðtÞ;uðtÞÞ denotes the Jacobian of the drift function
Fðx̂ðtÞ;uðtÞÞ from the SDE (1) (i.e. Jðx̂ðtÞ;uðtÞÞ ¼ ∂Fðx̂ðtÞ;uðtÞÞ=∂x̂ðtÞ),
Gðx̂ðtÞ;uðtÞÞ is the matrix from the stochastic noise term of this
equation, Q(t) is the covariance matrix of the zero-mean Gaussian
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