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a b s t r a c t

In this paper, we deal with the problem of the stabilization and the estimation of the state for a class of
linear impulsive systems. We show that, under the classical Kalman's conditions of controllability and
observability it is possible to design an observer based controller for the linear impulsive system.

& 2014 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Compared to classical continuous or discrete systems, impul-
sive systems can involve instantaneous and discontinuous changes
at various time instants. Differential equations involving impulse
effects occur in many applications: population dynamics in rela-
tion to impulsive vaccination [11], population ecology [10], drug
distribution in the human body [2], management of renewable
resources, etc.

Fundamental problems of automatic control theory, such as
observability, reachability and controllability, have been widely
investigated for different types of impulsive systems [1,4,14,15].
Guan et al. in [1] developed controllability and observability
results for linear impulsive systems where the control is available
for the continuous-time dynamics only at impact time and the
impulsive effects are limited to scalings of the state. For the same
type of linear impulsive systems, Xie and Wang in [14] used a
geometric framework to generalize the results of Guan et al. [1].
Medina and Lawrence [5] presented a geometric characterization
of the reachable and unobservable subspaces for a more general
class of linear impulsive systems. Medina and Lawrence [7]
obtained the result of state feedback stabilization for a class of
linear impulsive systems with arbitrarily spaced impulse times

and possibly singular state transition matrices. In contrast to many
well-established observers, which normally estimate the system
state in an asymptotic fashion, Raff et al. in [8] proposed an
impulsive observer with predetermined finite convergence time
for linear continuous-time systems, such that the observer state is
updated at a definite time instant. In [13], the authors present a
characterization of observability and an observer design method
for switched linear systems with impulses. In particular, they give
a necessary and sufficient condition for observability.

In this paper we focus on the construction of observers for
linear impulsive systems with the objective of stabilizing the state
of the system about the origin thanks to a dynamic output
feedback. On this subject, we have to mention the paper [6] in
which the authors built an observer for linear impulsive systems
with a discrete-time observation function; under the assumption of
strong observability property, they show that their observer yields
an uniformly exponentially stable dynamics for the error estima-
tion. In this paper, we treat the case of continuous-time observation
function. Our point of view is to regard the impulsions as
perturbations, under the hypothesis that these impulsions do not
occur too often, we deal with the problem of the stabilization and
the design of a Luenberger like observer. We also show a separa-
tion principle. The paper is organized as follows. In Section 2, we
state the key lemma on which our results will be based. In Section
3, we show, how under the classical assumptions of controllability
and observability of the pairs (A,B) and (A,C), we can construct a
stabilizing feedback law and an observer. In Section 4, we give a
separation principle. Finally, in the last section, we construct an
observer based in the impulsive part.
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2. The systems under consideration. The Key lemma

The class of systems under consideration is described by the
following equations:

_xðtÞ ¼ AxðtÞ�BuðtÞ tA ½tk�1tkÞ
xðtkÞ ¼Dxðt�k Þ
yðtÞ ¼ CxðtÞ

8><
>: ð1a–cÞ

where the state x belongs to Rn, the control u is in Rm, y is in Rp and
the matrices A, B, D and C have appropriate dimensions. Moreover,
xðt�k Þ denotes the limit lim t-tk

to tk

xðtÞ; the solution of (1) is thus piecewise

continuous and continuous to the right. We assume that the sequence
of impulse times t0, t1,… is increasing and, for every kZ1, we denote
by δk the difference δk ¼ tk�tk�1. We assume also that Kalman's

conditions are satisfied for the pairs (A,B) and ðAT;CTÞ. Under these
assumptions, it is well known that, given an arbitrary positive number
r, there exists a gain matrix K such that the spectrum of AK9A�BK is
located in the half plane Hr ¼ fzAC j ReðzÞo�rg. In other words,
given r40, there exists a gain matrix K such that JetAK Jrcðr;KÞe� rt

where cðr;KÞ is a constant (and J � J is any multiplicative norm on
Rn�n). The constant cðr;KÞ depends on r and K in a way that has been
analyzed by Sussmann and Kokotovic in [12]. Denoting by c(r) the
infinum of the numbers cðr;KÞ taken over all the gain matrices K such
that the spectrum of AK is included in Hr, these authors have proved
that

cðrÞrarν

where a is a constant and ν is the largest controllability index of the
pair (A,B). The following lemma is a direct consequence of this result.
Hereafter, we denote by S a compact set included in
H0 ¼ fzAC j ReðzÞo0g and which is symmetric about the Ox-axis.
Given a real number α40, we denote by αS the set αS¼ fαz j zASg.
A set fλ1;…; λng of complex numbers is called a spectrum if the
coefficients of the polynomial ðX�λ1Þ⋯ðX�λnÞ are all real numbers.

Lemma 2.1. Take a set S�H0 as described above and let r40 be
such that sup fReðzÞ j zASgo�r. Then there exists a constant a40
(depending on S and on the pair (A,B)) such that, for every αZ1 and
every spectrum fλ1;…;λng included in ðαSÞn � Cn, there exists a gain
matrix K such that the eigenvalues of AK are the λi’s and AK satisfies
the following inequality:

JetAK JraðαrÞν�1e�αrt ; for every tZ0

where ν denotes the largest controllability index of the pair (A,B).

Proof. The proof can be easily derived from the results shown in
[12] (especially Theorem 8.1). □

Corollary 2.2. Denote by S a compact set included in H0, which is
symmetric about the Ox-axis and let b, d and τ be three given positive
numbers. Then there exists a constant αZ1 (depending on b, d and τ)
such that for any spectrum ΛAðαSÞn � Cn, there exists a gain matrix K
such that the spectrum of AK is equal to Λ; moreover AK satisfies the
inequality.

JetAK Jrμe�b0t for every tZ0;

where b04b and μ40 is a constant such that

dμe�b0τ=2r1:

Proof. Let r40 be such that sup fReðzÞ j zASgo�r and take
αZ1 such that αr4b (so αS�Hb). Let ΛAðαSÞn � Cn be a
spectrum, then from Lemma 2.1, there exist a constant a and a
gain matrix K such that the spectrum of AK is equal to Λ; moreover

AK satisfies the inequality

JetAK JraðαrÞν�1e�αrt :

As limα-þ1daðαrÞν�1e�αrτ=2 ¼ 0, we have

daðαrÞν�1e�αrτ=2r1; ð2Þ
for every α large enough. Let μ¼ aðαrÞν�1, then we have
JetAK Jrμe�b0t and dμe�b0τ=2r1 where b0 ¼ αr. □

Remark. If the pair (A,C) is observable, from this result, we deduce
easily the existence of a gain matrix L such that JetðA� LCÞ Jrμe�b0t

for every tZ0 with dμe�b0τ=2r1: just apply the lemma to the pair
ðAT;CTÞ which is controllable and notice that the norm of a matrix
is equal to the one of its transposed.

3. Stabilization and estimation of the state of linear impulsive
systems

We shall construct now a linear feedback law which makes the
origin of system (1) exponentially stable.

Theorem 3.1. Assume that the pair (A,B) is controllable and that the
sequence ðδkÞkZ1 is bounded from below, then one can choose a gain
matrix K in such a way that the closed-loop system

_xðtÞ ¼ ðA�BKÞxðtÞ tA ½tk�1; tkÞ
xðtkÞ ¼Dxðt�k Þ

(
ð3Þ

is globally exponentially stable about the origin. Moreover the speed of
convergence can be made arbitrarily large according to the choice of
matrix K.

Proof. The sequence ðδkÞkZ1 being bounded from below, there
exists τ40 such that δk4τ for every kZ1. Thanks to the above
corollary, we know that we can choose b40, arbitrarily large, and
a gain matrix K such that

JetAK Jrμe�bt and μe�bτ=2 JDJr1:

We shall show that, with this feedback law, the linear impulsive
system (3) is exponentially stable about the origin.
The state transition matrix of (3) is given by

ϕðt; t0Þ ¼ eðt� tkÞAK DeδkAK⋯Deδ1AK ; tA ½tk; tkþ1Þ;
so we have

Jϕðt; t0ÞJr‖D‖k Jeðt� tkÞAK J JeδkAK J…Jeδ1AK J

r‖D‖kμkþ1e�bðt� tkÞe�bδk…e�bδ1

¼ ‖D‖kμkþ1e�bðt� tkÞe�bðtk � t0Þ

rμðJDJμe�bτ=2Þke�bðt� tkÞe�b=2ðtk � t0Þ because δiZτ

rμe�bðtþ tk=2� t0=2Þ because JDJμe�bτ=2r1

rμe�b=2ðt� t0Þ:

This inequality proves the claim of the global asymptotic stability of (3)
(and even the exponential stability). Moreover, as b can be chosen
arbitrarily, the speed of convergence can be made arbitrarily large. □

We consider now the following auxiliary dynamical system:

_̂x ðtÞ ¼ Ax̂ðtÞ�BuðtÞ�LðCx̂ðtÞ�yðtÞÞ; tA ½tk�1; tkÞ
x̂ðtþk Þ ¼Dx̂ðt�k Þ

(
ð4Þ

by arguing in exactly the same way as in Theorem 3.1, we prove
that the gain matrix L can be chosen in such a way that system (4)
is an exponential observer for system (1).

Theorem 3.2. Assume that the pair (A,C) is observable and that the
sequence ðδkÞkZ1 is bounded from below, then one can choose the
gain matrix L in such a way that system (4) is an exponential
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