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a b s t r a c t

High-gain observers can be easily designed for nonlinear systems and they present very good convergence
properties, when the observability mapping of the system is injective in the whole. If the observability
mapping is injective in the whole, the system can be transformed into a normal form, from which the
estimation of the successive output derivatives can be easily carried out. If the observability mapping is not
injective in the whole and the state trajectory of the system passes close to some set where the property of
observability is lost (about which the observability mapping is not injective), the resulting high-gain
observers may be subject to significant numerical errors. The objective of the paper is to propose an
improvement of the classical procedure for the high-gain observer design, so that the nonlinear system is
transformed into a modified normal form, through a transformation that is obtained from the observability
mapping, by removing singularities belonging to a certain class. Hence, a new high-gain structure,
containing two sets of small parameters, is proposed for designing a high-gain observer for this modified
normal form. The new observer is applied to a Bullard dynamo, to show that the new observer obtains
good state estimates even for trajectories very close to unobservability, for which the classical high-gain
observer is affected by significant numerical errors.

& 2014 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The state observation problem for (possibly, time-varying) linear
systems was introduced, with the modern terminology, in [34]
and solved in the deterministic case in [43,44]. A survey about
state observers for linear systems can be found in [57]. A geometric
characterization of the observability for linear systems is given in [71]
(see also [6], in the case of linear systems, and [32,37,54,59], in the
case of nonlinear systems).

Many definitions of observability in the case of nonlinear
systems have been given in [28,53,60–62], including the definition
of observability independent of the input [20], which has been
applied in the high-gain observer design.

The problem of obtaining state estimates for nonlinear systems is
a very challenging field of research, and has been continuously
attracting the attention of many researchers in the area of control
theory in the past few decades, both for its intrinsic value and for the
possible use of the state estimates for control purposes. Without
any claim to be complete, some of the main contributions (not

adopting high-gain structure) can be found in [2,4,7,12,13,35,
39–41,47–49,58,67–69]; such works, and references therein, often
include discussions on different concepts and definitions related to
the problem of state-estimation.

Starting from similar ideas adopted in the analysis of singularly
perturbed systems [38], the use of high-gain in the observer design
for nonlinear systems has been introduced in the late 1980s and
early 1990s, from theoretical [9,15,16,64,65] and applicative [21,50–
52] points of view; as an application of high-gain observer in
control applications, in [63], Teel and Praly combined results from
Tornambe [66] and Esfandiari and Khalil [16] to give the first non-
local separation principle for nonlinear systems (see [32]).

Among the more recent contributions, without any claim of
completeness, one can mention [1,3,5,8,11,14,18,19,26,27,30,31,42,55,
70,72]. Surveys about high-gain observers can be found in [22,36].

In the classical high-gain observer design, the considered non-
linear system is diffeomorphic to a normal form, which is obtained
by using as state transformation the observability mapping; this
normal form is observable in the whole, if the observability mapping
is injective in the whole. A point, about which the observability
mapping is not injective, is said to be singular. About singular points
both the inverse of the observability mapping and the normal form
are not defined. If the state trajectory of the system passes very
close to some singular point, the computation of the inverse of the
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observability mapping may be affected by numerical errors and the
normal form may contain terms that tend to be unbounded when
the trajectory passes close to the singularity. The objective of the
paper is to propose an improvement of this classical procedure, so
that the nonlinear system is transformed into a modified normal
form, through a transformation that is obtained from the observa-
bility mapping, by removing singularities belonging to a certain class:
in this way, both the transformation does not present singularities
and the modified normal form does not contain unbounded terms in
proximity of the singularities of the observability mapping; this is
paid by the fact that such a modified normal form may not be
observable in the whole. Hence, a new high-gain structure, contain-
ing two sets of small parameters, is proposed for designing a high-
gain observer for this modified normal form, allowing the state
trajectory of the system to pass close to singular points, but not over
them. The results are very good, as proved in a simulation test, where
the new observer is applied to a Bullard dynamo, showing that the
new observer obtains good state estimates even for trajectories very
close to unobservability.

The organization of the paper is as follows: after a first brief
review of the singularities that can be presented by the observa-
bility mapping, in Section 3 a physical system is described, the
Bullard dynamo, which is locally observable in a set that is dense
in R2, and loses its observability along a line in the phase plane.
For trajectories approaching such a line (which are not rare) the
traditional high-gain observers fail in obtaining the estimate of the
non-measured variable. In Section 4, a new approach to high-gain
observer design is proposed, consisting in a change of coordinates
that allows us, under some technical assumptions, to rewrite the
system in a modified normal form, and to “remove” singularities
related to the loss of local observability; based on such a normal
form a new design of the output injection matrix gain is given,
which uses two small parameters, whose choice allows us to
obtain practical stability of the estimation error dynamics, and, in
lucky cases, exponential stability. Finally, in Section 5, the new
observer is applied to the Bullard dynamo, showing a dramatic
improvement of performance with respect to traditional high-gain
observer.

2. Singularities of the observability mapping

The goal of this section is to review some basic definitions of
observability for nonlinear systems, with the aim of characterizing
the main difficulty to be addressed in this paper: the possible loss
of observability due to singularities of the observability mapping,
occurring just at some points of the state space. Several simplify-
ing choices are made, to concentrate on the description of the loss
of observability that motivates the observer proposed later in the
paper. Consider a system

_ξ ¼ f ðξÞ; ð1aÞ

y¼ hðξÞ; ð1bÞ

where ξARn and f and h are analytic in U �Rn. For the sake of
simplicity, assume in this section that yAR (this assumption will
be removed in the following sections). The observability mapping is
given by

HðξÞ ¼

hðξÞ
Lf hðξÞ

⋮
Ln�1
f hðξÞ

2
66664

3
77775;

where, for any scalar function αðξÞ, Lfα is the directional derivative
of α along f, and Liþ1

f α¼ Lf ðLifαÞ.

Remark 1. As explained in [22], the choice made here of limiting
to n�1 the order of derivative of h in defining the observability
mapping is somewhat restrictive, since it may be needed to derive
up to the order 2n�1 to obtain an injective mapping. The
approach proposed here could also be extended to the cases when
it is needed to derive up to order 2n�1. Nevertheless, since the
focus of this paper is on how to behave when there are singula-
rities, of the kind described below, for simplicity the definition
above has been preferred.

System (1) is locally differentially observable (briefly, locally
observable) at ξ0AU if there exists a neighborhood Bξ0 of ξ0 such
that HðξÞ is an injective mapping on Bξ0 ; system (1) is locally
differentially observable (briefly, locally observable) in U if it
is locally differentially observable at each ξ0AU . If rankð∂H=
∂ξjξ ¼ ξ0 Þ ¼ n, then system (1) is locally observable at ξ0AU , but
condition rankð∂H=∂ξjξ ¼ ξ0 Þon need not imply that system (1) is
not locally observable at ξ0AU . Some functions α1ðξÞ;…;αmðξÞ,
being analytic on U , are functionally dependent on U if for each
ξ0AU there exists a function Fξ0 , not identically zero, such that
Fξ0 ðα1ðξÞ;…;αmðξÞÞ ¼ 0 for all ξABξ0 , where Bξ0 is a neighborhood
of ξ0, and functionally independent if for each ξ0AU there exists no
function Fξ0 such that Fξ0 ðα1ðξÞ;…;αmðξÞÞ ¼ 0 for all ξ belonging to
some Bξ0 . By Theorem 2.16 of [56] (see also Theorem 1.1 of [45]),
functions α1ðξÞ;…;αmðξÞ are functionally independent (respec-
tively, dependent) of U if and only if the rank of ∂α=∂ξ, where
α¼ ½α1;…;αm�> , is (respectively, is not) full over the field of
meromorphic functions. It is worth pointing out that functional
dependence and functional independence exhaust the range
of possibilities only in the analytic case (for more details,
see [56]), whereas the situation is more complicated in the
non-analytic case.

Since f and h are analytic on U , the following three cases are
possible.

(Case 1) The rank of ∂H=∂ξjξ ¼ ξ0 is full for each ξ0AU , whence
system (1) is locally observable in U . In this case, the functions
h; Lf h;…; Ln�1

f h are functionally independent and the functions
h; Lf h;…; Ln�1

f h; Lnf h are functionally dependent; therefore, for
each ξ0AU , there exists a function ϕξ0 such that ϕξ0 ðhðξÞ;
Lf hðξÞ;…; Lnf hðξÞÞ ¼ 0, for all ξABξ0 , where Bξ0 is a neighborhood
of ξ0. Since rankð∂H=∂ξjξ ¼ ξ0 Þ ¼ n, equation ϕξ0

ðhðξÞ;
Lf hðξÞ;…; Lnf hðξÞÞ ¼ 0 can be locally rendered explicit with respect
to Lnf h, whence there exists a function φξ0

such that Lnf hðξÞ ¼
φξ0

ðhðξÞ; Lf hðξÞ;…; Ln�1
f hðξÞÞ, for all ξABξ0 .

(Case 2) The entries of HðξÞ are functionally independent (i.e.,
the rank of ∂H=∂ξ is full over the field of meromorphic functions)
but there may exist some point ξ0AU such that rankð∂H=∂ξjξ ¼ ξ0 Þ
is not full, whence system (1) is locally observable for almost all
ξ0AU because the set of points ξ0AU , for which the rank of
∂H=∂ξjξ ¼ ξ0 is not full, is nowhere dense in U (i.e., its complement

is dense in U). Also in this case, the functions h; Lf h;…; Ln�1
f h are

functionally independent and the functions h; Lf h;…; Ln�1
f h; Lnf h

are functionally dependent; therefore, for each ξ0AU , there exists

a function ϕξ0
such that ϕξ0

ðhðξÞ; Lf hðξÞ;…; Ln�1
f hðξÞ; Lnf hðξÞÞ ¼ 0,

for all ξABξ0 , where Bξ0 is a neighborhood of ξ0. If rankð∂H=
∂ξjξ ¼ ξ0 Þ ¼ n, then equation ϕξ0

ðhðξÞ; Lf hðξÞ;…; Lnf hðξÞÞ ¼ 0 can

be locally rendered explicit with respect to Lnf h about ξ0, but if

rankð∂H=∂ξjξ ¼ ξ0 Þon, then it could happen that equation

ϕξ0 ðhðξÞ; Lf hðξÞ;…; Ln�1
f hðξÞ; Lnf hðξÞÞ ¼ 0 is not locally explicitable

with respect to Lnf h about ξ0.
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