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a b s t r a c t

In this paper we propose a cooperative distributed economic model predictive control strategy for linear
systems which consist of a finite number of coupled subsystems. The suggested feedback strategy is
generating control input which converges to a set of Nash equilibria of the corresponding game provided
infinite iterations are allowed at each sampling time. Moreover, the control for each subsystem is computed
in itself without coordination layer except for a synchronization requirement between subsystems.

We first introduce distributed linear systems with two subsystems and economic model predictive
control, then show the convergence and stability properties of a suboptimal model predictive control
strategy for the system. The optimization problem for the implementation of MPC is stated with a terminal
equality constraint and a terminal cost.

& 2014 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Model predictive control (MPC) is a feedback design technique
which computes control actions by taking into account the current
state of a plant and all sorts of constraints between input and
output variables that need to be fulfilled. Typically, a cost func-
tional is available or is suitably designed so as to find the most
appropriate control action by means of real-time optimization.
At the same time the control action should steer the plant's
operation to a desired operating condition within reasonable
amount of time.

Recently, as an application for systems which consist of multi-
ple subsystems and/or large-scale systems, distributed MPC has
been investigated. See [19] for a recent survey on the subject.
The present note further develops the so-called cooperative Model
Predictive Control; this is a particular variant of MPC in which it is
assumed that individual subsystems may cooperate towards a
common objective. In [20] a solution for tracking MPC of dis-
tributed systems as suboptimal MPC was suggested and analyzed.

The contribution of this article is to extend the techniques
suggested in [20] to the case of economic MPC [17]. This is a
variant of standard MPC which aims at achieving both transient
and steady-state costs minimization simultaneously. In particular,
the MPC control layer directly uses the true economic cost in
devising the optimal control action; this entails that cost need not
be minimal at the best steady-state and, as a consequence, overall
stability may be affected.

Recently, average performance and stability issues as well as
Lyapunov-based analysis techniques were proposed in [3] and [6]
respectively. While control algorithms were initially designed by
making use of terminal equality constraints (for the sake of guaran-
teeing both recursive feasibility and performance bounds), subse-
quent works have relaxed in several directions this assumptions, for
instance by using terminal penalty functions [1], generalized term-
inal constraints [7] and [12] or by removing terminal equality
constraints [8] (see [9] for a distributed approach to this problem).
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In this paper we propose a distributed economic MPC problem
for linear systems with economic cost function, and also suggest a
method for its solution.

2. Linear distributed systems

We assume a discrete-time linear system whose input consists
of two components. Although all arguments can be extended to
the case of M components with ease (see Section 8.2), we limit
ourselves to this case for notational simplicity:

xþ ¼ AxþBu¼ Axþ½B1 B2�
u1

u2

" #
; ð1Þ

where xAX�Rn, u1AU1 �Rm1 , u2AU2 �Rm2 , AARn�n,
B1ARn�m1 and B2ARn�m2 . We assume that the state and input
set X, U1 and U2 are all compact. Notice that distributed systems
with two subsystems also can be represented as in (1) since
coupled states are included in A. Therefore the subsystems are
coupled through states as well as input.

Throughout this paper by cooperative MPC we mean that the
two controllers share a common cost to minimize. That is, we aim
to separately design control laws u1ðkÞ ¼ κ1ððxðkÞÞ and u2ðkÞ ¼
κ2ðxðkÞÞ which optimize the given cost cooperatively. As a design
technique we adopt economic model predictive control which is
presented specifically in the next section.

3. Economic model predictive control

For systems as expressed in (1), pointwise state and input
constraints are introduced. If the following constraints hold for the
state variable xð�Þ and input uð�Þ we say that the pair ðxð�Þ;uð�ÞÞ is
feasible:

xðkþ1Þ ¼ AxðkÞþBuðkÞ
gðxðkÞ;uðkÞÞr0; 8kAIZ0 ð2Þ
We assume that g : X�U�U2-R is a convex function, so any
sublevel set is also convex.

For the systems and constraints we define the following
objective function with a stage cost function ℓðx; ½u1;u2�Þ : Rn �
Rm1 � Rm2-R which is assumed strictly convex:

∑
k
ℓðxðkÞ; ½u1ðkÞ;u2ðkÞ�Þ ð3Þ

Given the convexity of ℓð�Þ and linearity of (1), we will design a
controller which operates the system at the best admissible
steady-state at least asymptotically. The best admissible steady-
state is defined as the solution of the following steady-state
optimization problem:

min
x;u

ℓðx;uÞ subject to x�ðAxþBuÞ ¼ 0; gðx;uÞr0: ð4Þ

Note that, unlike standard model predictive control, in economic
model predictive control there might exist pairs (x,u) such that
ℓðx;uÞrℓðxs;usÞ and gðx;uÞr0 if (x,u) is not a itself a steady-state.

Now, to study the issue of feasibility for the optimization
problem related to MPC it is useful to define the following sets.

Definition 1 (Feasible set). We define feasible set ZN for economic
MPC as the set of ðx;uÞ pairs detailed below:

ZN≔fðx;uÞARn � RNðm1 þm2Þjxð0Þ ¼ x;
xðNÞAXf ; xðkþ1Þ ¼ AxðkÞþBuðkÞ;
gðxðkÞ;uðkÞÞr0; 8kAI0:N�1g ð5Þ
where Xf DX is a convex and compact control positively invariant
set which contains xs and u is a sequence of uðkÞ; kAIZ0 i.e,
u¼ fuð0Þ;uð1Þ;…;uðN�1Þg.

The projection of ZN onto X is denoted as the set of feasible
states.

Definition 2 (Feasible states). XN is called the set of feasible
states, and is defined as follows:

XN≔fxj(u such that ðx;uÞAZNÞg: ð6Þ

For each feasible state x we also define set of feasible control
sequences.

Definition 3 (Set of feasible control sequences). For a given feasible
state xAXN the set of feasible control sequences is defined as

UNðxÞ≔fujðx;uÞAZNg

We introduce the following well-known convexity property of
the feasible set [4].

Lemma 1. The feasible set ZN is convex.

It is worth pointing out that since there is no termination time
in the operation of real plants, we first solve the optimization
Problem 3 over finite time horizon, then proceed in a receding
horizon manner by shifting forward by one interval at each
sampling time the overall optimization problem as customary in
MPC. We will provide more details about this later in Section 4.

3.1. Suboptimal MPC

Implementation of distributed MPC strategies through multiple
iterations is a process similar to the computation of centralized
MPC through distributed optimization over many processors.
Since MPC is based on the assumption of on-line or real-time
implementation of an optimal solution, the available time for
computation is limited. Therefore, despite convexity of the under-
lying problem could in principle lead to asymptotically convergent
solutions, we allow the implementation of feasible suboptimal
control actions instead of the true optimal control. This, at least, if
the optimization is too complex to solve within the available time.

For the current feasible state xAXN we assume a feasible
control sequence ~uAUNðxÞ. After iterating several times a certain
optimization problem and suitably updating the best available
guess of its optimal solution (this is specified in Section 8), each
subsystem generates a new input sequence ui giving rise to
improved performance with respect to the warm start input
trajectory which is computed at the previous time-instant. We
inject the first component uð0Þ of u, which is constructed as
½u1ð0Þ;u2ð0Þ�, to the plant, and the next state arises according to
the evolution xþ ¼ AxþBu. At the following sampling time we
indicate ~u ¼ fuð1Þ;uð2Þ;…;uðN�1Þ; κf ðxðNÞÞg as a warm start to be
transmitted to and to be used as an initial guess by each
subsystem. The local controller κf simply fulfills κf ðxsÞ ¼ us for the
case of MPC subject to terminal equality constraint and is other-
wise defined to be a feasible control action making the set Xf

positively invariant.

4. Formulation of centralized and cooperative economic MPC

Let us now introduce the optimization problems associated
with centralized and cooperative MPC so that comparison
between the two could clarify the role of each subsystem in the
plantwide system. As stated in the previous section, there exists a
shared objective function among all subsystems, which we define
as a sum of stage cost functions ℓðxðkÞ;u1ðkÞ;u2ðkÞÞ over a fixed
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