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a b s t r a c t

This paper considers the recursive identification of errors-in-variables Wiener–Hammerstein system,
which is composed of a static nonlinearity sandwiched by two linear dynamic subsystems. Both the
system input and output are observed with additive noises being ARMA processes with unknown
coefficients. By the stochastic approximation algorithms incorporated with the deconvolution kernel
functions, the coefficients of the linear subsystems and the values of the nonlinear function are
recursively estimated. All the estimates are proved to converge to the true values with probability one.
A simulation example is given to verify the theoretical analysis.

& 2013 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The block-oriented systems [14] are widely applied to model
the practical nonlinear systems owing to their simple structure
and excellent modeling ability. The Wiener–Hammerstein system
composed of two dynamic linear subsystems with a static non-
linear function in between has a great flexibility for modeling
practical systems, for example, sensor systems, electromechanical
systems in robotics, mechatronics, biological and chemical sys-
tems, and others. The well-studied Hammerstein and Wiener
systems can be thought of the special cases of the Wiener–
Hammerstein system. Thus, the identification issue of Wiener–
Hammerstein systems has received a considerable attention from
both theoretical researchers and engineers.

In the early literature [5,3,16] on identification of the Wiener–
Hammerstein system, the impulse responses of the two linear sub-
systems are connected with the correlation functions between the
system input and output under the Gaussian input. Based on the
maximum likelihood method, a time domain identification algorithm
is proposed in [6], and a simple recursive identification technique for
multi-input single-output Wiener–Hammerstein system is presented
in [4] with the help of a weighted extended least squares method.
Some recent work can be found in [25,29,12,18], and among others.

To identify the nonlinear function in a Wiener–Hammerstein
system there are parametric [2–4,6,25] and nonparametric
approaches [18,15], according to the different descriptions of the

nonlinear function. The parametric approach is applied when the
nonlinear function is expressed as a linear combination of basis
functions such as polynomials, cubic splines functions, piecewise
linear functions, neural networks with unknown coefficients, etc.
In this case identification turns out to be a parameter estimation
problem that can be solved by the standard optimization method
such as the gradient method, Newton-Raphson method, and
others. The nonparametric approach is used to estimate the values
of the nonlinear function at any given point with the help of the
kernel functions, requiring no structural information about the
nonlinearity. For this there have been some literature [23,22]
dealing with nonparametric regression by stochastic approxima-
tion involving the kernel functions. Likewise, we adopt the
nonparametric method in the paper. To be specific, the stochastic
approximation and the deconvolution kernel functions are
together used to achieve this. Here we consider the case where
the input and output of the system are not accurately available, but
they are observed with additive noises, i.e., we intend to identify
the errors-in-variables (EIV) Wiener–Hammerstein systems.

There exist some papers on identifiability [1] and identification
[24] of the linear EIV systems. Various estimation methods for
identifying linear EIV systems, for example, the instrumental
variables based methods, the bias-compensation approaches, the
Frisch scheme, the frequency domain methods, the prediction
error and the ML methods, are well summarized in the survey
paper [24], but the methods mentioned there are nonrecursive.
The recursive identification for the linear EIV systems is consid-
ered under different assumptions on the system input and on the
observation noise in [26,8,30,18]. There are also a few papers
[28,17,19] on the identification of nonlinear EIV systems.
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In the paper we consider the SISO EIV Wiener–Hammerstein
system (see Fig. 1) described as follows:

PðzÞvkþ1 ¼ Q ðzÞu0
k ; ð1Þ

φk ¼ f ðvkÞþηk; ð2Þ

CðzÞy0kþ1 ¼DðzÞφkþξkþ1; ð3Þ
where z denotes the backward-shift operator zy0kþ1 ¼ y0k , while f ð�Þ
is the unknown nonlinear function, and

PðzÞ ¼ 1þp1zþp2z
2þ⋯þpnp

znp ; ð4Þ

Q ðzÞ ¼ 1þq1zþq2z
2þ⋯þqnq z

nq ; ð5Þ

CðzÞ ¼ 1þc1zþc2z2þ⋯þcnc z
nc ; ð6Þ

DðzÞ ¼ 1þd1zþd2z2þ⋯þdndz
nd ð7Þ

are polynomials with unknown coefficients but with known
orders np; nq; nc; nd. The noise-free input uk0 and output yk0 are
observed with additive noises ɛð1Þk and ɛð2Þk :

uk ¼ u0
kþɛð1Þk ; yk ¼ y0kþɛð2Þk : ð8Þ

Identification of the EIV Wiener–Hammerstein system is more
difficult in comparison with that for the EIV Wiener system
discussed in [19]:

(1) The output of the EIV Wiener system is an α-mixing with
mixing coefficients decaying exponentially to zero but this is no
longer true for the EIV Wiener–Hammerstein system. In [19] it is
seen that the mixing property plays an important role in conver-
gence analysis.

(2) Because of the linear subsystem at the output end, more
complicated relationships relating the impulse responses and the
correlation functions should be taken into account (see Lemma 1).

The goal of this paper is to recursively estimate the unknown
parameters of the two linear subsystems fp1;…; pnp

; q1;…; qnq ;
c1;…; cnc ; d1;…;dnd g and the value of f(x) at any given x at the real
axis on the basis of the observed data fuk; ykg.

The rest of the paper is arranged as follows. The system
assumptions and the recursive algorithms are given in Section 2.
The strong consistency of the estimates for the linear and non-
linear parts is proved in Sections 3 and 4, respectively. A numerical
example is presented in Section 5, and a brief conclusion is given
in Section 6.

2. Assumptions and recursive identification algorithms

2.1. Assumptions

We first give the conditions for identifying the two linear
subsystems.

H1: The noise-free input fu0
kg is a sequence of mutually

independent, identically distributed (i.i.d.) Gaussian random vari-
ables: u0

kA N ð0;ϑ2Þ with unknown ϑ40, and is independent of
the internal noises fηkg and fξkg and the observation noises fɛð1Þk g
and fɛð2Þk g.

H2: P(z) and Q(z) are coprime and P(z) is stable: PðzÞa0;
8jzjr1.

H3: C(z) and D(z) are coprime and both are stable: CðzÞa0 and
DðzÞa0; 8jzjr1.

By the stability of P(z) and C(z), we have

LðzÞ9Q ðzÞ
PðzÞ ¼ ∑

1

i ¼ 0
liz

i; ð9Þ

HðzÞ9DðzÞ
CðzÞ ¼ ∑

1

i ¼ 0
hiz

i; ð10Þ

where jlij ¼Oðe� r1 iÞ; r140; iZ1 and jhij ¼Oðe� r2iÞ; r240; iZ1;
and l0 ¼ 1 and h0 ¼ 1 since all polynomials (4)–(7) are monic. The
numbers fli; iZ0g and fhi; iZ0g are called the impulse responses
of the two linear subsystems, respectively.

H4: Both the measurement noises fɛð1Þk g and fɛð2Þk g belong to the
ARMA process:

F1ðzÞɛð1Þk ¼ G1ðzÞςð1Þk ; F2ðzÞɛð2Þk ¼ G2ðzÞςð2Þk ; ð11Þ
where

F1ðzÞ ¼ 1þ f 1;1zþ f 1;2z
2þ⋯þ f 1;nf1 z

nf1 ; ð12Þ

G1ðzÞ ¼ 1þg1;1zþg1;2z
2þ⋯þg1;ng1

zng1 ; ð13Þ

F2ðzÞ ¼ 1þ f 2;1zþ f 2;2z
2þ⋯þ f 2;nf2 z

nf2 ; ð14Þ

G2ðzÞ ¼ 1þg2;1zþg2;2z
2þ⋯þg2;ng2

zng2 : ð15Þ

The polynomial F1ðzÞ has no common factor with G1ðzÞG1ðz�1Þzng1 ,

and F1ðzÞ and F2ðzÞ are both stable. The driven noises fςð1Þk g
and fςð2Þk g and the internal noises fηkg and fξkg are mutually
independent, and each of them is a sequence of i.i.d. zero mean
random variables with probability density. Moreover, EðjηkjΔÞo1,

EðjξkjΔÞ o1; Eðjςð1Þk jΔþ3Þo1; and Eðjςð2Þk jΔÞo1 for some Δ43.
H5: The nonlinear function f ð�Þ is measurable and has both the

left limit f ðx� Þ and the right limit f ðxþ Þ at any point x. The growth
rate of f(x) as jxj-1 is not faster than a polynomial. Further, at
least one of the parameters ρ and κ is nonzero, where

ρ9
1ffiffiffiffiffiffi

2π
p

s5ϑ

Z
R
ðx2�s2ϑ2Þf ðxÞe�x2=2s2ϑ2

dx; ð16Þ

κ9
1ffiffiffiffiffiffi

2π
p

s7ϑ

Z
R
ðx3�3s2ϑ2xÞf ðxÞe�x2=2s2ϑ2

dx; ð17Þ

where s2 ¼∑1
i ¼ 0l

2
i :

Remark 1. The growth rate restriction in H5 implies that there are
constants α40 and βZ1 such that

jf ðxÞjrαð1þjxjβÞ 8xAR: ð18Þ
Therefore, the integrals (16) and (17) are finite.

Let us explain conditions imposed here. Conditions H1 and H4
and also H6 and H7 to be introduced later concern the signals in the
system, while Conditions H2, H3, and H5 are on the structure of the
system. The purpose of applying the Gaussian input in H1 is to derive
the explicit relationships (25)–(28) connecting the impulse responses
of the two linear subsystems and the correlation functions between
the observed input and output. These relationships are the basis
of the proposed algorithms for estimating the impulse responses
by using the observed input and output. It is clear that H2 and H3 are
the standard condition on the linear subsystems. Condition H4
concerns the measurement errors, which are not negligible in
consideration of the present paper. Here we allow them to be
correlated. In Condition H5, the function f ð�Þ is allowed to be
discontinuous: it is discontinuous at x if f ðx� Þa f ðxþ Þ. Further,
the assumption that at least one of the constants ρ and κ is non-
zero holds for many practical nonlinearities including polynomials,

Fig. 1. EIV Wiener–Hammerstein system.
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