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a b s t r a c t

One of the recent developments in attitude control is the notion of almost-global asymptotic stabilization
(AGAS) using coordinate-free control laws. In this paper, we examine two aspects related to this line of
research. The first is the problem of AGAS with internal actuation. Since all of the results concerning
AGAS so far focus on external actuation, we address the internal actuation case and show that there
exists a class of control laws that can almost globally stabilize the desired equilibria either by external or
internal actuation. The second aspect we analyze is the construction of potential functions leading to
AGAS. We show that it is possible to construct such potential functions in such a way that the resulting
control torque depends only on two vector observations, thus avoiding the need for explicitly computing
the attitude matrix for the purpose of feedback. We also show that these potentials are nothing but the
commonly used error functions, namely the modified trace functions.

& 2013 European Control Association. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Attitude stabilization of a rigid body is a classical and important
problem and has been widely studied in the context of controlling
spacecraft or underwater vehicles. Even though the state space for
this problem is a nonlinear manifold, classically this problem has
been analyzed by making use of local representations such as
Euler angles or global but redundant representations like quater-
nions, resulting in differential equations on a Euclidean space. It is
only recently that the problem has been analyzed in a ‘coordinate-
free’ framework [17,6,21,7,18,8] where one deals with the
dynamics directly on the nonlinear state space, namely the
tangent or the cotangent bundle of SO(3). The motivation for
doing this, rather than use a coordinate dependent approach, has
been documented well in the references cited above.

One of the main advantages of the coordinate-free approach is
that it allows a global analysis of the designed feedback control
law. However, since the rigid body dynamics evolves on a fiber
bundle over a compact manifold, global asymptotic stabilization is
not achievable through continuous feedback [5]. The notion of
almost global asymptotic stability or AGAS (to be defined in Section
2) is the best one can hope to achieve in this situation. Control
laws that can achieve AGAS have been indeed developed for the
case of external actuation [17,21,7,18,8].

In the case of internal actuation, to the best of our knowledge,
the existing literature on rigid body stabilization is solely based
upon the coordinate dependent approach. In the classical space-
craft control textbooks such as [30,16,28], the attitude stabilization
and the attitude acquisition problems are addressed as a sequence
of single axis maneuvers and the system can be treated as linear in
this situation. Schaub and Junkins [26] have recently developed a
stabilizing control law based on the modified Rodriguez para-
meterization.

If we assume that the external torques are negligible, the total
angular momentum of the system is conserved. In the literature so
far, this fact is often accounted for by imposing an algebraic
constraint on the evolution of state variables. The coordinate-
free approach, by taking into account the conservation of angular
momentum, can offer remarkable economy and simplicity in
terms of the governing equations and the feedback control law.
In this work, we shall adopt this approach and address the
stabilization problem using a coordinate-free approach when the
actuation is by internally mounted rotors. We show that there
exist control laws that achieve AGAS with internal actuation and
achieve the same with external actuation, with only a sign change.
It is worth noting that this result applies only to a class of control
laws and to highlight this, we present an example of a control law
which stabilizes with internal actuation, the negative of which
does not stabilize with external actuation.

Potential functions inspired from the gravitational potential of
a spinning top have been used earlier for stabilization of angular
velocity of rigid bodies or underwater vehicles [19,25]. These
potential functions are capable of stabilizing what are known as
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relative equilibria [22]. On the other hand, trace and the modified
trace functions have been used as error functions for total
stabilization of rigid body attitude and angular velocity [17,6]. In
this paper, we show that these two approaches are closely related.
A preliminary version of these results appears in [3].

Control laws have been recently proposed for attitude stabili-
zation using vector observations, without the need for explicitly
computing the attitude matrix [24,29,1]. This has an advantage in
spacecraft applications that the system can function even if the
inertial navigation system fails. In the paper [24], the authors
propose a control law for adaptive stabilization using vector
observations based on an observer–controller framework. This
setup however calls for additional computational effort in an
actual application, for the integration of the observer variables.
In the paper [29], the authors develop a-priori bounded, velocity-
free control laws based on vector observations, using the quater-
nion representation for the spacecraft orientation. The damping
necessary to achieve asymptotic stability is generated by augment-
ing the rigid body dynamics with an auxiliary system. The
resulting closed loop system in [29] might however have a
continuum of equilibria, depending on the choice of the observed
vectors, as we shall demonstrate. We show, taking motivation
from classical rigid body systems such as a spinning top, a method
of deriving a coordinate-free, almost globally stabilizing control
torque using only two vector observations, without the need for an
observer or an auxiliary system. Also, in any globally defined
control law, determining the equilibrium points of the closed loop
dynamics and the nature of stability at these points is of utmost
importance. We show how one can utilize the existing framework
of modified trace functions for this purpose and show that the
closed system with the control law that we derive has only four
isolated equilibria. We also delineate a method of estimating the
angular velocity using body-rates of two vector observations,
which is in turn used for the damping torque in our control law.

We first review the strategy of AGAS for external actuation in
Section 3 using potential or error functions. In Section 4, we then
show how the same potential can be used to design stabilizing
internal torques. In Section 5 we show how to use vector
observations to build modified trace functions. We derive an
expression in closed form for the body angular velocity from
body-rates of two vector observations in Section 6. We present
simulation results in Section 7.

2. Preliminaries

The set of orientations of a rigid body, which is the set of 3�3
proper orthogonal matrices is the Lie group SO(3) [23]. The
tangent space at the group identity eASOð3Þ, called the Lie algebra
of SO(3), is the space of 3�3 skew-symmetric matrices, which is
denoted by soð3Þ. For any RASOð3Þ, we can define a function LR
over SO(3) as LRðQ Þ ¼ RQ for every QASOð3Þ. This function, LR :

SOð3Þ⟶SOð3Þ has an inverse and both LR and L�1
R are differenti-

able. Hence, LR is a diffeomorphism and is called ‘the left-
translation by R’. Every differentiable map has a derivative map
or tangent map and TeLR, the tangent map of LR evaluated at e,
maps from soð3Þ to TRSOð3Þ, the tangent space of SO(3) at R. The
map TeL

n

R : Tn

RSOð3Þ⟶soð3Þn, where Tn

RSOð3Þ is the cotangent space
at R and soð3Þn is the dual of the Lie algebra, is the dual of TeLR.

The vector space soð3Þ can be identified with R3 using the map
S : R3⟶soð3Þ (also called the hat map). For every a¼ ða1; a2;
a3ÞAR3,

SðaÞ ¼
0 �a3 a2
a3 0 �a1
�a2 a1 0

264
375:

We can use this map to identify soð3Þn with R3 as follows (see for
example [13]). Define p : soð3Þn⟶ðR3Þn, p¼ Sn, the adjoint of S.
If we identify ðR3Þn with R3 using the inner product, then p :
soð3Þn⟶R3 is given by

pðρÞ � η≔〈ρ;SðηÞ〉; ð1Þ
for any ρAsoð3Þn. Here the ð�Þ on the left hand side denotes the
standard inner product on R3 and the angles-bracket on the right
hand side denotes the dual action of soð3Þn on soð3Þ. We often
denote η̂ ¼ SðηÞ, for ηAR3, to avoid notational complexity.

We now give a definition of AGAS relevant in our context. This
is essentially the notion of almost global stability used in the
literature.

Definition 2.1. An equilibrium point xAM of a vector field X on M
is almost globally asymptotically stable if

� x is locally asymptotically stable,
� X has finite number of equilibrium points and the stable

manifold of every equilibrium point other than x is a lower
dimensional submanifold of M,

� all points in M\U , where U is the union of stable manifolds of
the equilibrium points other than x, converge to x.

3. Review of stabilization by external actuation

The equations of motion of a rigid body with external torque u
are given by

_R ¼ RSðI�1ΠÞ; ð2Þ

_Π ¼Π � I�1Πþu; ð3Þ
where Π is the angular momentum expressed in the body
coordinates and I is the moment of inertia matrix. In a
coordinate-free analysis, one directly makes use of the rotation
matrices, instead of representing them using coordinates such as
Euler angles or quaternions, which implies that one directly
considers the dynamics on the nonlinear manifold. For example,
consider a top spinning with its point of contact on the ground at
rest. The torque due to gravity on the top can be written as a
function of the rotation matrix R as uðRÞ ¼ �mgχ � RTe3, where
m and g are the mass and the acceleration due to gravity respec-
tively, χ is the vector from point of contact to the center of mass
expressed in the body frame and e3 is the unit vector in the
direction of gravity. Substituting this expression for u in Eq. (3), we
get a dynamical system whose state variable consists of R, a 3�3
proper orthogonal matrix and Π, a vector in R3.

It might seem uneconomical at the outset to directly use proper
orthogonal matrices which have nine components, instead of
using coordinates such as Euler angles or quaternions which have
three or four components. However, the methods of analysis in the
coordinate-free set-up seldom require one to express R in terms of
its components. The analysis often involves geometric ideas that
capture the dynamics by using R as only a symbol to represent the
orientation, as we shall demonstrate in this section. We also refer
the reader to [8] for a tutorial on the coordinate-free approach.

As it will become clear through the course of this paper, it is
often beneficial to look for a feedback control law which can be
derived from a scalar valued smooth function V : SOð3Þ⟶R. The
paper by Koditschek [17] is among the first one to analyze
coordinate-free, globally defined control laws, which are derived
fromwhat he calls as a navigation function. A navigation function is
a Morse function on SO(3) and the stabilization properties of the
resulting control law were studied using the Riemannian geome-
try structure that can be given to SO(3). Bullo and Lewis also derive
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