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h i g h l i g h t s

�Modeled fermentation process using artificial neural network on five batches of 5L-stirred-tank.
� Optimized the fermentation parameters using a time-dependent strategy.
� Obtained an optimal regulation trajectory using the genetic algorithm.
� Performed 25 batches more fermentation under the optimal trajectory guideline.
� Confirmed the dissolved oxygen level most significantly impacting on modeling.
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a b s t r a c t

The artificial neural network (ANN) and genetic algorithm (GA) were combined to optimize the fermen-
tation process for enhancing production of marine bacteriocin 1701 in a 5-L-stirred-tank. Fermentation
time, pH value, dissolved oxygen level, temperature and turbidity were used to construct a ‘‘5–10–1’’ ANN
topology to identify the nonlinear relationship between fermentation parameters and the antibiotic
effects (shown as in inhibition diameters) of bacteriocin 1701. The predicted values by the trained
ANN model were coincided with the observed ones (the coefficient of R2 was greater than 0.95). As the
fermentation time was brought in as one of the ANN input nodes, fermentation parameters could be opti-
mized by stages through GA, and an optimal fermentation process control trajectory was created. The
production of marine bacteriocin 1701 was significantly improved by 26% under the guidance of fermen-
tation control trajectory that was optimized by using of combined ANN–GA method.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Marine bacteriocin 1701, a metabolite of the marine Brevibacte-
rium casei strain, has strong antibacterial activity against a multiple
drug-resistant strain EU(3)25 (resistant to 100 lg/mL ampicillin,
15 lg/mL tetracycline, 25 lg/mL chloramphenicol, 50 lg/mL strep-
tomycin and 60 lg/mL erythromycin). Multiple drug-resistant bac-
teria were emerging in coastal waters (Gulkowska et al., 2007; Li
et al., 2012; Vignesh et al., 2012) due to the discharge of large
amounts of domestic sewage (Shahidul Islam and Tanaka, 2004;
Vignesh et al., 2012; Williams, 1996) and the overuse of antibiotics
in coastal aquaculture (Cabello, 2006; Di Cesare et al., 2012). These
multiple drug-resistant bacteria can seriously infect aquaculture
farmers (Buschmann et al., 2012; Defoirdt et al., 2007) and upset
the ecological balance of coastal waters (Sarmah et al., 2006; Zheng

et al., 2012). Marine bacteriocin 1701 with strong antibacterial
activity is plausible for preventing and curing bacterial infections.

However, synthesis levels of marine metabolites are usually
quite low (Davidson, 1995), thus the optimization of fermentation
by way of a stirred-tank is essential to enhance production in order
to purify compounds and characterize structures. Many factors
controlling fermentation process have complex effects on the
production (Lübbert and Bay Jørgensen, 2001), and statistical
methods such as response surface method (RSM) are widely used
(Cruz et al., 2012; Mao et al., 2011) to characterize such interactive
effects. The development of accurate models for a microbial fer-
mentation process is still a critical challenge (Singh et al., 2008),
mainly due to the non-linear nature of biochemical network inter-
actions. Machine learning techniques including artificial neural
network (ANN) and genetic algorithm (GA) can mimic different as-
pects of biological information processing and have been proved
effective in data modeling for the optimization of fermentation
processes (Franco-Lara et al., 2006; Silva et al., 2012). ANN is a
typical mathematical model simulating the structure and function
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of human neural networks (Patnaik, 1999) which is powerful in
dealing with a non-linear modeling and has been widely used in
biological technology (Patnaik, 1999). GA is a stochastic global
search algorithm based on the principles of natural biological evo-
lution (Goldberg and Holland, 1988) and has been widely used for
more complex optimizations in bioprocess engineering (Ronen
et al., 2002; Sarma et al., 2009). The combined ANN–GA method
has been proved superior to RSM (Desai et al., 2008; Nelofer
et al., 2012) and effective in modeling and optimization with vari-
ous bioprocess systems (Chen et al., 2004; Sathish and Prakasham,
2010). For example, the ANN–GA based approach was used for the
optimization of medium in shaking-flask fermentation (Zafar et al.,
2012a), and further applied to the optimization of agitation and
aeration rates in a 3-L-stirred-tank (Zafar et al., 2012b) fermenta-
tion for the production of P(3HB-co3HV) by Azohydromonas lata
MTCC 2311. The RSM based data were further optimized by using
the ANN-GA method to improve the productions of marine biosur-
factant by approximately 70% (Sivapathasekaran et al., 2010), alka-
line protease by 2.5 times (Rao et al., 2008), and glucansucrase by
6.0% (Singh et al., 2008). Similarly, the combined ANN–GA method
was used to optimize the mixed substrates for biogas production
resulting in an increase of 8.64%, and an early biogas production
initiated on the third day of fermentation, compared to the eighth
day in the non-optimized system (Gueguim Kana et al., 2012).

Unlike those methods mentioned above, however, in the pres-
ent study the fermentation time will be brought in as one of the
ANN input nodes so that all parameters regulating an auto-con-
trolled 5-L-stirred-tank could be optimized in a coordinated way
focusing on controlling the fermentation stages. According to this

assumption, an optimal piecewise control trajectory can be worked
out by using the combined ANN–GA method; and the production
can be improved under the guidance of such an optimized piece-
wise control trajectory.

2. Methods

2.1. Microorganism and culture conditions

Marine B. casei 1701 strain and multiple drug-resistant strain
EU(3)25 were kept in our lab and used in this study. Marine strain
1701 was inoculated into 200 mL of Zobell culture medium in a
500 mL Erlenmeyer flask and incubated in a temperature-con-
trolled incubator shaking at 200 rpm/min, 28 �C, for 24 h (such
conditions were optimized previously by using RSM). The batch
fermentation was carried out in a 5-L-stirred-tank (Biostat B, Ger-
many) with 3.5 L working volume of production medium and 10%
(v/v) inoculums. The optimized production medium for bacteriocin
1701 was composed of (g/L): fish peptone 19, glycerol 8, NaCl 43,
NH4Cl 10.5, and MgSO4 3.8. The pH values of the culture medium
were regulated with 1 N HCl and 12.5% ammonia.

2.2. Assay of antibacterial activity

Samples (2 mL) from the fermented broth were taken at 4-h
intervals and centrifuged at 8000 rpm/min for 15 min at 4 �C, and
the cell free supernatant was used for estimating the antibacterial
activity of the multiple drug-resistant strain EU(3)25, using a dou-
ble-layer agar technique (Shilo, 1970). The diameter of inhibition
zone was used to indicate the synthesis level of marine bacteriocin
1701. The fermentation time, pH value, dissolved oxygen level, turbid-
ity and temperature were recorded online by the electrodes and
probes of 5-L-stirred-tank (Fig. 1).

2.3. Modeling and optimization

2.3.1. ANN modeling
The 5-L-stirred-tank was treated as a black box (Fig. 1) accord-

ing to black-box theory (Bunge, 1963), ignoring microbial physio-
logical and biochemical process of fermentation, and only
focusing on the relationship between input and output values of
the stirred tank. The ANN modeling was experimentally proved
effective for establishing a complex, non-linear relationship be-
tween input and output. Fermentation parameters (fermentation
time, pH value, dissolved oxygen level, temperature and turbidity)
were used to construct a ‘‘5–10–1’’ ANN topology to identify the
nonlinear relationship between fermentation parameters (input
vector) and bacterial inhibition diameter DDE (output vector)
(Fig. 1). The connection between the input layer and the hidden
layer was achieved by transfer function ‘tan–sigmoid’ (f1: tansig),
weights (weightH) and bias (biasH) between the input layer and
the hidden layer; the connection between the hidden layer and
the output layer was achieved by transfer function ‘pure–linear’
(f2: purelin), weights (weightO) and bias (biasO) between the hidden
layer and the output layer (Fig. 1). The predicted output values
(DDP

E) can be described as Eq. (1). The back–propagation algorithm
was used to train the ANN (Rummelhart et al., 1986). In this train-
ing algorithm, the error between the predicted (DDP

E) and the ob-
served values (DDO

E ) was calculated and propagated backward
through the network to the weights of each layer. The algorithm
regulated the weights continuously in the direction of reducing er-
rors between DDP

E and DDO
E until the errors met the requirement.

The ANN stopped training when the mean square error (MSE, Eq.
(2)) between DDP

E and DDO
E met the pre-set value of 0.005. A trained

ANN must be evaluated by testing samples (a dataset not used for

Fig. 1. Schematic diagram of a 5-L-stirred-tank and artificial neural network
modeling. 1: Recorder; 2: control panel; 3: turbidity probe; 4: pH electrode; 5:
temperature electrode; 6: DO probe; 7: stirrer; 8: air sparger; 9: sampling nozzle;
10: air compressor; 11: air filter; 12: 1 N HCl; 13: 12.5% ammonia; 14: 50% glycerol;
15: antifoamer.
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