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a b s t r a c t

Normal flow depth is an important parameter in design of open channels and analysis of gradually varied
flow. In open channels with parabolic and rectangular cross-sections, the governing equations are
nonlinear in terms of the normal depth and thus solution of the implicit equations involves numerical
methods. In current research explicit solutions for these channels have been obtained using asymptote
matching technique. For the parabolic channel, the maximum error of proposed equation for normal
depth is less than 0.07% (near exact solution). But, in rectangular channels, the maximum error of pro-
posed equation for normal depth is less than 1.94% which is not very accurate. The efficiency of the
asymptote matching technique can be considerably improved by adding a power-law function between
two asymptotes. For rectangular channel a new solution for normal flow depth is developed using the
improved asymptote matching technique proposed in this research. The maximum error of this full range
solution is less than 0.12%. The results showed that the improvement in proposed solution is substantial.
Proposed full range solutions have definite physical concept, high accuracy and easy calculation and are
well-suited for manual calculations and computer programming.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Normal flow depth plays an important role in the design of
open channels. Determination of the normal flow depth is an
important task for efficient hydraulic design and hence many re-
searches have been carried out in this subject. The simplest open
channel flow cross section is a rectangle. Rectangular channels are
widely used for open channel flow. Open channels with parabolic
cross-sections are often a quite good approximation of the real
geometry of natural rivers. Technology is also available for con-
structing this shape of channels. The parabolic open channel is
widely used in irrigation area, especially in the farmland irrigation
projects of cold regions [1]. There are no analytical solutions to
explicitly compute the normal water depths in rectangular and
parabolic open channels. Thus any effort for presenting direct
normal depth calculation with high accuracy would be of practical
importance. Normal flow depths in rectangular and parabolic open
channels are presently obtained by numerical method, manual
trial-and-error method (time-consuming), graphical method (low
accuracy owing to its log-scale representation) or by using explicit
regression-based equations.

Babaeyan [2] presented graphical solutions for the normal
depths of round-corner rectangular and parabolic channel

sections; however, his solution is not suitable for practical appli-
cations. Various explicit equations for determining the normal
depth have been developed for rectangular cross-section with
various degrees of estimation errors and different application
range (among them [3–7]). Swamee and Rathie [3] proposed two
converging infinite series solutions (based on Lagrange's inversion
theorem) that help in evaluating the normal depth in wide and
narrow rectangular cross sections. When two different solutions
are given for a cross section, a limit of applicability should be
determined. Based on the truncation of an iterative algorithm,
Srivastava [4] showed that a fitted series would be more accurate
than a truncated one. Some researches have also been down on
normal depth calculation of parabolic channels. For parabolic cross
section, Achour and Khattaoui [8] derived three explicit solutions
for the normal depth, depending on the value of the relative
normal depth. The proposed solution is not a unified one and its
relative error reaches up to 1%. Li and Gao [1] proposed an explicit
two-step solution for estimating the normal depth of parabolic
channel with a relative error less than 0.34% for the ratio of width
to depth between 0.2 and 20. It would be more useful to have a
simple and accurate solution rather than one which is more
complicated (two-step solution).

The main focus of this research is on accurate and explicit full
range solutions for normal flow depth. In current research, using
the asymptote matching technique, accurate and direct solutions
have been developed to determine the normal depths of
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rectangular and parabolic cross sections. Proposed solutions cover
entire practical range. The proposed solutions are preferable to
previous presented solutions in terms of accuracy, generality and
simplicity.

2. Geometric properties

A parabolic channel (Fig. 1a) is described by below equation:

Y kX 12= ( )

where Y¼ordinate (m); X¼abscissa (m); and k¼a parameter for
which the function takes different shapes. Note that, the unit of k
is m�1. The flow area of the channel, A, for the flow depth, y, can
be computed as
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where η¼4ky.

The wetted perimeter, P, can also be obtained as follows:
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The flow area, A, of a rectangular channel for the flow depth, y,
is equal to By in which B is the bottom width of the channel
(Fig. 1b). The wetted perimeter, P, is also equal to Bþ2y.

3. Governing equations and their non-dimensional forms

In gradually varied flow computations, also design and opera-
tion of open channels it is required to determine normal/uniform
flow depth, yn. The normal flow depth is occurred when the in-
crease in energy due to elevation drop is balanced by friction
losses along the open channel.

The Manning equation for uniform flow in an open channel
with hydraulically rough surfaces is given by [9–11]

Notations

A Cross-section area of flow (m2)
B Bottom width of rectangular channel (m)
g Gravitational acceleration (m/s2)
k Parabolic parameter (m�1)
n Manning roughness coefficient (m�1/3 s)
p Matching coefficient
P Wetted perimeter of flow (m)
Q Channel flow discharge (m3/s)
R Hydraulic radius (m)
S0 Channel longitudinal bed slope (m/m)
X Abscissa (m)
y Channel flow depth (m)
Y Ordinate (m)
yn Normal flow depth (m)
α Fitting coefficient
β Fitting coefficient
ν Kinematic viscosity (m/s2)
η Non-dimensional flow depth in parabolic channel

[¼4ky]
ζ Non-dimensional flow depth in rectangular channel

[¼y/B]
λ Unit conversion constant

εp Non-dimensional discharge for normal flow depth
computations in parabolic channel

ηn Non-dimensional normal flow depth in parabolic
channel [¼4kyn]

ζn Non-dimensional normal flow depth in rectangular
channel [¼yn/B]

εr Non-dimensional discharge for normal flow depth
computations in rectangular channel

ε Channel surface roughness (m)
ηn0 Lower asymptote for parabolic section (non-

dimensional)
ηn1 Upper asymptote for parabolic section (non-

dimensional)
ζn0 Lower asymptote for rectangular section (non-

dimensional)
ζn1 Upper asymptote for rectangular section (non-

dimensional)
ζnβ Power-law function for rectangular section [¼αεrβ

non-dimensional]

Subscript

“n” Denotes the uniform flow condition

Fig. 1. Cross-section geometry for (a) parabolic open channel and (b) rectangular open channel.
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