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a b s t r a c t

Technical design of side weirs needs high accuracy in predicting discharge coefficient. In this study,
discharge coefficient prediction performance of multi-layer perceptron neural network (MLPNN) and
radial basis neural network (RBNN) were compared with linear and nonlinear particle swarm
optimization (PSO) based equations. Performance evaluation of the model was done by using root
mean squared error (RMSE), coefficient of determination (R2), mean absolute error (MAE), average
absolute deviation (δ) and mean absolute relative error (MARE). Comparison of the results showed that
both neural networks and PSO based equations could determine discharge coefficient of modified
triangular side weirs with high accuracy. The RBNN with RMSE of 0.037 in test data was found to be
better than MLPNN with RMSE of 0.044 and multiple linear and nonlinear PSO based equations (ML-PSO
and MNL-PSO) with RMSE of 0.043 and 0.041, respectively. However, due to their simplicity, PSO based
equations can be sufficient for use in practical cases.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Side weirs are extensively being used in hydraulic engineering
applications to control and divert the overflow from the channels.
Flood control and flow deviation from dam reservoirs and irrigation
and drainage systems are among the main functions of side weirs.
Side weirs are constructed along the side of the main channel to
direct the overflow to a tributary channel when the water level
increases. Calculating side weir equations through a mathematical
method, De Marchi [1] assumed that the specific energy before and
after the weir are equal and calculated per unit length discharge
over the side weir by using Eq. (1).
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where CM is De Marchi coefficient, dQ/dx upstream main channel
discharge/distance from the beginning of weir, y flow depth, w weir
height, and g gravity acceleration. Many studies have been done on
rectangular side weirs and some equations have been introduced to
estimate discharge coefficient [2–11]. Triangular and circular are
other kinds of side weir and many researchers have investigated the
efficiency of such side weirs [12–19]. An increment in the length of
the side weir can reduce the risk of channel side edge overflow and
erosion. One way to increase weir length is to increase the width of

tributary channel, but while this widening seems impossible, a
practical way seems to be using labyrinth side weir in which the
weir crest is not straight. This very geometrical change can increase
discharge coefficient from 1.5 to 4.5 times [20]. Borghei and Parvaneh
[21] designed a new modified labyrinth triangular side weir. The
authors found that this modified side weir is up to 2.33 times more
efficient than the rectangular side weir. Discharge coefficient equa-
tion for modified triangular side weir as a function of geometrical
and upstream flow parameters was presented by using nonlinear
regression method as follows.
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where Fr1, Y1 and θ are upstream Froude number, upstream flow
depth, and side weir included angle.

Due to the high capacity of soft computing methods such as
artificial neural network (ANN) and particle swarm optimization
(PSO) to analyze complex problems, these methods have been
used in various hydraulic problems such as discharge coefficient of
lateral weirs [20,22–26], scour depth prediction [27], flow char-
acteristics in different open channels [28–30], rainfall modeling
[31,32], combined open channel flow [33], and sediment transport
[34,35].
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The goal of this study is to provide a reliable method to predict
the discharge coefficient of modified triangular side weir. Two
different artificial neural network (ANN) models, multi-layer per-
ceptron neural network (MLPNN) and radial basis neural network
(RBNN) were developed and compared with two different particle
swarm optimization (PSO) based formulation, multiple linear par-
ticle swarm optimization (ML-PSO and multiple nonlinear particle
swarm optimization (MNL-PSO). Four dimensionless parameters,
w/L (weir height/weir length) Fr1/sin(θ/2) (upstream Froude num-
ber/sin (weir included angle/2)), w/Y1 (weir height/upstream flow
depth) and w� sin(θ/2)/Y1 (weir height� sin(weir included angle/
2)/upstream flow depth) were used to develop the ANN and PSO
models as input data and discharge coefficient CM is used as output
data. To assess the accuracy of the methods, the experimental
results of Borghei and Parvaneh [21] were used. The results of this
study showed that radial basis neural network is a suitable method
to compute discharge coefficient of modified triangular side weir.

2. Experimental results

The experimental results of Borghei and Parvaneh [21] were
used in this research. Fig. 1 shows a schematic representation of
experimental set-up consisting of main channel, modified labyr-
inth triangular side weir and discharge collection system.

A no-slope rectangular channel with 11 m length and 0.4 m
width is used as the main channel. Channel side wall has 0.66 m
height and is made of glass. The experiments were done at 0.3 m,
0.4 m, and 0.6 m weir length (L), and at 50 mm, 75 mm, 100 mm,
and 150 mm weir height (w). In addition, the weir included angle
(θ) is taken as 601, 901, 1201 and 1401. In all cases, upstream Froude
number (Fr1) ranges from 0.19 to 0.96 and the ratio of weir height
to water depth in side weir upstream (w/Y1) changes between 0.46
and 0.83.

Two hundred experiment runs were conducted in different geo-
metrical conditions to obtain discharge coefficient CM of modified
labyrinth triangular side weir. The details of these experiments are
given in Table 1.

Water head measurement accuracy and discharge measure-
ment accuracy were 71 mm and 70.0001 m3/s respectively.

3. Methods

To estimate discharge coefficient of modified labyrinth side
weir, four different soft computing methods, MLPNN, RBNN, ML-
PSO and MNL-PSO have been used. In ANN models, 60% of
experimental data is used for training. ANN training data were
also used to perform PSO models. Then the accuracy of each model
was investigated by test data. The characteristics of RBNN, MLPNN,
and PSO-based equations are given in the following sections.

3.1. Multi-layer perceptron neural network

One of the most applicable neural networks is multi-layer percep-
tron (MLP) [36]. A feed forward MLP consists of an input layer or one
or more hidden output layers. Every layer comprises of a number of
neurons. The number of neurons in input layers equals the number of
inputs and outputs of the given issue, respectively. In the neural
networks made in this study for hidden-layer and output neurons,
sigmoid and linear activation functions are used, respectively. Function
f(x) is a sigmoid type if it is bounded and is increased by increasing
x value [37]. However, diverse functions can be regarded as sigmoid
function. In the present study, hyperbolic tangent was used in hidden
layers as activation function. To train ANN, Levenberg–Marquardt
method was applied. In this method, back-propagation algorithm is
used to find the weights and bias of neural network. It is one of the
most useful algorithms in MLP neural network [38]. This algorithm
quantifies the difference between the outputs observed in laboratory
studies and outputs of ANN model by determining weights and bias
with high velocity.

3.2. Radial basis neural network

Radial basis neural networks (RBNN) [39,40] are formed of two
layers. The output nodes consist of a linear combination of the radial
basis function. A radial basis function (RBF) is a real-valued function
whose value depends only on the distance from the origin [41]. Input
transformation is necessary to reduce the curse of dimensionality
in experimental modeling; then a non-linear projection is used in
RBNN. After that, the output layer plays the role of a linear regressor.
Adjustable parameters of this regressor are the weights that can be
determined using the linear least squares method. In RBNN method, a
nonlinear radial basis function φ(x,c) was used, where x is the input
variable and c is the center of function. φ only depends on the radial
distance, r¼ ||x�c||. The RBNN goal is choosing a function from a linear
space of dimension N, depending on the data points [42]. The basis of

Fig. 1. Plan view of a modified oblique weir and the parameters used [21].

Table 1
Range of variable tested [21].

θ L
(m)

w (mm) w/Y1 Q1 (m3/s) Fr1 Number
of runs

60 0.3 50,75,100,150 0.46–0.83 0.019–0.030 0.19–0.96 40
0.4 50,75,100,150

90 0.3 50,75,100,150 0.46–0.83 0.019–0.030 0.19–0.96 55
0.4 50,75,100,150
0.6 50,100,150

120 0.3 50,75,100,150 0.46–0.83 0.019–0.030 0.19–0.96 50
0.4 50,100,150
0.6 50,100,150

140 0.3 50,75,100,150 0.46–0.83 0.019–0.030 0.19–0.96 55
0.4 50,75,100,150
0.6 50,100,150
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