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a b s t r a c t

Accurate determination of discharge coefficient is one of the major concerns in the process of the de-
signing of side weirs. Relation between the modified side weirs discharge coefficient to various geometric
and hydraulic situations leads to a high flow complexity around the weirs. In this study, two types of
support vector regression (SVR) methods were employed to model the discharge coefficient of a modified
triangular side weir. Two types of SVR are obtained by using the radial basis and polynomial as the kernel
functions. Six different non-dimensional input combinations with different input variables were used to
find the most appropriate one. The results show that both SVR-rbf and SVR-poly methods perform better
when the number of input variables is higher, and there is no compaction in the non-dimensional input
variables. Comparison between the investigated models shows that the SVR-rbf by RMSE of 0.063 per-
forms much better that SVR-poly by RMSE of 0.084.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Side weirs are widely used in flow control structures such as
irrigation and drainage, sewage, flood control and diversion sys-
tems. Side weirs are simple structures that set along the main
channel side wall to control the flow rate and height. De Marchi [1]
provided the first mathematical relations to calculate the dis-
charge variation along the side weir (Eq. (1)).
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where Cd is the discharge coefficient, y depth of flow, w weir
height, g gravity acceleration and dQ/dx discharge variation along
the main channel. The primary assumption used to obtain this
equation is the equality of the specific energy upstream and
downstream of the side weir that was investigated and verified in
other studies [2–4].

Primary side weirs have a rectangular shape. Rectangular side
weirs are the simplest types of side weirs. There are various stu-
dies done on the discharge coefficient simulation of the rectan-
gular channels [5–9].

There are two major alternatives to improve the diversion
ability of the side weirs; increase the length of the side weir or
increase the efficiency of the side weir. Increasing the side weir

length requires the increase of the tributary width that seems
costly. In addition, in cases where there is limitation in the tri-
butary channel width, this alternative is impossible. One of the
major tasks that can be performed to improve the side weir effi-
ciency is to make some shape modification. Shape modification
could increase the discharge coefficient of the side weir by 1.5–4.5
times compared to the traditional rectangular side weirs [10,11].
Various types of modified side weirs are such as triangular, la-
byrinth and elliptical ones. Various researches were done to de-
termine the shape modified side weirs characteristics [11–19].

Because of the complexity of flow properties and the need to
accurately predict the characteristics, soft computing methods are
widely used in modeling the side weir characteristics. Bilhan et al.
[20] used Feed Forward Neural Network (FFNN) and Radial Basis
Neural Network (RBNN) methods to predict the discharge coeffi-
cient of a sharp-crested rectangular side weir located in a straight
channel. Emiroglu et al. [21] predicted the discharge coefficient of
triangular labyrinth side weirs by using adaptive neuro-fuzzy in-
terface system (ANFIS) and found that ANFIS could significantly
predict the discharge coefficient with more accuracy. Bilhan et al.
[10] modeled the discharge coefficient of a triangular side weir
that is located in a curved channel by using the Artificial Neural
Network (ANN) method. The authors concluded that triangular
side weirs are more efficient than traditional side weirs by up to
4.5 times. Dursun et al. [22] modeled the discharge coefficient of a
semi-elliptical side weir by using ANFIS. The Authors concluded
that ANFIS could successfully be used in discharge coefficient
prediction, and it performs much better than Multiple Linear and
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Nonlinear Regression methods (MLR and MNLR). Zaji and Bo-
nakdari [23] compared the Multi-Layer Perceptron Neural Net-
work (MLPNN), RBNN and Particle Swarm Optimization (PSO)
based equations to predict the discharge coefficient of a modified
triangular side weir. The authors found that the RBNN could pre-
dict the discharge coefficient of modified triangular side weirs
with the highest accuracy amongst the three methods.

The aim of this study is to predict the discharge coefficient of a
modified triangular side weir. Discharge coefficient of these side
weirs were dependent on various variables such as weir length (L),
weir height (w), weir included angle (θ), main channel width (b),
upstream Froude number (Fr1) and upstream flow depth (y1).
Because of the complex nature and multivariable dependency, a
high-performance soft computing is needed to model the dis-
charge coefficient of modified side weirs. Support vector regres-
sion (SVR) is employed in this study to modeling the discharge
coefficient. To find the appropriated SVR, two methods were ex-
amined. The first one, the SVR-rbf uses radial basis function as the
kernel function and the second one, the SVR-poly uses the poly-
nomial kernel function. Six different non-dimensional input
combinations were performed and tested with the SVR-rbf and
SVR-poly methods to determine the most useful input variables. To
train and test the SVR methods, the experimental dataset of Bor-
ghei and Parvaneh [11] were used.

2. Experimental dataset

The experimental study of Borghei and Parvaneh [11] were
used to train and test the SVR-rbf and SVR-poly methods. The
authors introduced a modified triangular side weir that performs
up to about two times more efficient than the traditional side
weirs (Fig. 1).

The main channel has a horizontal bed, 0.4 m width, and 11 m
length. Glass made side walls with a height of 0.66 m were used.
The experiments were done in various geometry and hydraulic si-
tuations by varying the weir length (L) between 0.3 m to 0.6 m, weir
height between 50 mm to 150 mm, weir included angle (θ) be-
tween 60° to 140°, upstream Froude number (Fr1) between 0.19 to
0.96 and upstream flow depth between 0.08 m to 0.2 m. The var-
iation of the parameters in each experiment is shown in Table 1.

In the experimental study, two hundred measurements were
done in various hydraulic and geometric situations. The accuracy
of head measurements was 71 mm, and the accuracy of the
discharge measurements was 70.0001 m3/s.

3. Material and methods

3.1. Input parameters

As with other soft computing methods, the prediction accuracy
of the SVR models is directly dependent on the selection of the

appropriate input combination. In this study, comprehensive input
combinations were examined to find the appropriate one. Table 2
shows the six different input combination that were investigated
as the input variables of the SVR-rbf and SVR-poly.

Some soft computing methods perform better when the
number of the input variable is low, and adversely, some others
perform better when the number input variables is high. In Ta-
ble 2, it could be seen that the input variables of each input
combination is different. The first input combination uses five no-
compact input variables of w/b, y1/b, L/b, sin(θ/2), Fr1 and the last
input combination uses one compact input variable of wLFr1sin(θ/
2)/by1.

The input variables of the input combination consist of non-
dimensional combinations of the geometric (w, b, L and θ) and
hydraulic (Fr1 and y1) conditions. The statistical properties of the
non-dimensional variables are provided in Table 3. The standard
deviation showed the distribution of the samples around the mean
value and presented the degree of consistency among the samples
of each variable.

Fig. 1. Modified labyrinth side weir [11].

Table 1
The different geometric and hydraulic parameters used for the modified labyrinth
side weir Borghei, Parvaneh [11].

θ/2 (deg) L (m) w (mm) w/y1 Q1 (m3/
s)

Fr1 Number of
runs

30 0.3 50,75,100,150 0.46–0.83 0.019–
0.030

0.19–0.96 40
0.4 50,75,100,150

45 0.3 50,75,100,150 0.46–0.83 0.019–
0.030

0.19–0.96 55
0.4 50,75,100,150
0.6 50,100,150

60 0.3 50,75,100,150 0.46–0.83 0.019–
0.030

0.19–0.96 50
0.4 50, 100,150
0.6 50, 100,150

70 0.3 50,75,100,150 0.46–0.83 0.019–
0.030

0.19–0.96 55
0.4 50,75,100,150
0.6 50,100,150

Table 2
Different examined input combinations.

Input name Input variables

Input#1 w/b, y1/b, L/b, sin(θ/2), Fr1
Input#2 w/y1, L/b, sin(θ/2), Fr1
Input#3 w/y1, Lsin(θ/2)/b, Fr1
Input#4 w Fr 1/y1, L/b, sin(θ/2)
Input#5 wL/by1, Fr1sin(θ/2)
Input#6 wLFr1sin(θ/2)/by1

Table 3
Statistical parameters of modified triangular discharge coefficient.

Variables Statistical parameters

Min Max Mean Standard deviation

w/b 0.125 0.375 0.241 0.095
y1/b 0.200 0.513 0.348 0.096
L/b 0.750 1.500 1.010 0.290
w/y1 0.461 0.831 0.671 0.098
sin(θ/2) 0.499 0.939 0.769 0.161
Fr1 0.192 1.001 0.438 0.181
Lsin(θ/2)/b 0.374 1.409 0.788 0.304
w Fr 1/y1 0.134 0.607 0.281 0.091
wL/by1 0.352 1.247 0.679 0.220
Fr1sin(θ/2) 0.112 0.816 0.334 0.152
wLFr1sin(θ/2)/by1 0.067 0.593 0.219 0.108
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