ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC-PapersOnLine 49-15 (2016) 044-049

Debugging Autonomous Driving Systems
Using Serialized Software Components

Pascal Minnerup * David Lenz * Tobias Kessler * Alois Knoll **

* fortiss, An-Institut der Technischen Universitat Minchen, Germany
** Robotics and Embedded Systems, Technische Universitat Munchen,
Germany

Abstract: In the development of software-intensive systems in a vehicle, like an autonomous
driving system, defects are often only recognized during trials on the physical vehicle. In contrast
to a simulation environment, a physically executed maneuver does not offer the possibility to
pause and debug critical code sections or to reproduce and repeat faulty trials. Furthermore,
development space and capacities are limited inside the car. Therefore, it is best practice to
analyze faults observed during a physical execution offline and to reproduce faulty trials in a
simulation environment. The repetition in a simulation environment is a time consuming effort
but necessary for pushing the software component towards a state in which it showed the faulty
behavior. This paper shows an approach for executing the faulty state again in a simulation
environment by serializing the exact state of the software system and summarizes practical

experience gained by this approach.

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Fault Detection, Diagnosis, Tolerance and Removal; Path Planning; Advanced

Driver Assistance Systems

1. INTRODUCTION

In the last couple of years, the development of advanced
driver assistant systems up to highly-automated driving
gains more and more weight in the automotive industry.
This trend should decrease the traffic injuries and fatalities
and offer comfort to the driver and passengers of a car.
However, the complexity of automated driving necessitates
increasingly large software systems to handle all possible
situations. The growing size causes more possible errors
that can occur during the runtime and thus increases the
time invested for testing and debugging.

When developing such kind of systems, it is common
practice to first implement and test the desired behavior
of a software component within a simulation environment.
First, each software component is considered separately
and then the interaction between all necessary modules
is tested. This approach allows to pause the simulation at
any time a defect occurs in order to attach a debugger and
have a look at the internal state of a piece of software.

Unfortunately, when deploying the system to a real vehicle,
this approach is not possible anymore. This is especially
true for dynamic test cases, where the situation cannot just
be stopped or has to be repeated multiple times to find
the error. Furthermore, most of the time, the testing of
the complete system might be done by developers without
the knowledge of how to debug all the programs. Thus,
it is necessary to gather data in order to reproduce the
failure within a controlled environment by an expert, but
the question remains how much data is needed?

There are many influences depicted in Fig. 1 that might
cause the occurrence of a defect besides only the input to

OS Static Data

User
Interaction

Software
Component

Timing
Communication
Randomness

Debugging
Tools

Fig. 1. Different influences on the execution of a software
component.

a software component. In a non-realtime runtime environ-
ment (which is usually used for predevelopment), timing is
a big part that might alter the internal states. For example,
results may depend on the order and time of incoming
data. This order and time is further influenced by some
operating system due to threading, file access, etc. Thus
a method is needed in order to reproduce the conditions
when the defect occurs as closely as possible and eliminate
the influence of the hardware and operating system of the
computer in the car.

We propose a framework for serializing internal states of
software components to achieve a decoupling of most of
the influences presented which lead to a failure within one
cycle of a software component.

The structure of the paper is as follows: First, we show the
state of the art approach and present approaches from re-

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2016.07.612

Pascal Minnerup et al. / IFAC-PapersOnLine 49-15 (2016) 044-049 45

cent literature to debug complex software systems in gen-
eral, or automotive functions in particular. Subsequently,
we introduce our method of serializing and deserializing of
software components and the offline test tools used to find
defects. Last, we report some practical experience gained
during an industry project applying this solution.

2. RELATED WORK

In industrial projects, failures occurring on physical vehi-
cles are mainly reproduced by recording measured sensor
values, actor commands, and debug signals emitted by
the software components. In the following, these will be
referred to as signal traces. These traces are created with
pre development tools like dSpace Control Desk!, the
harddisk recorder in Elektrobit’s Automotive Data and
Time-Triggered Framework (EB Assist ADTF)? or Bags
of the Robot Operating System (ROS) 3.

Teams researching autonomous driving for the DARPA
urban challenge (Defense Advanced Research Projects
Agency (2007)) had to cope with failures occurring in the
physical vehicle. They dealt with them by recording com-
munication data during the failure event and reproducing
the failure by replaying the data. Two of the eleven teams
explicitly describe how they reproduced failures (Bacha
et al. (2008); Patz et al. (2008)) and seven mention that
they are able to record and playback communication data
(Chen et al. (2008); McBride et al. (2008); Rauskolb et al.
(2008); Bohren et al. (2008); Leonard et al. (2008); Miller
et al. (2008); Urmson et al. (2008)) most likely also used
for reproducing failures. The remaining two teams do not
explain how they dealt with failures (Montemerlo et al.
(2008); Kammel et al. (2008)).

In a broader scope of software engineering additional tech-
niques for reproducing failures have been developed. Many
approaches are also based on recording and replaying
communication data. Clause and Orso (2007) address the
problem that communication data logs can be quite large
and take as much time to replay as it took to record
them. Therefore, they apply techniques for reducing the
required size and increasing replay speed. Zamfir et al.
(2013) work with still larger amounts of data of data
center applications and record only a reduced set of the
communication. Plus, they address some sources of non
determinism caused by network and scheduler timing. The
effect of such non determinism is increased for long replay
scenarios. Artzi et al. (2008) eliminate this problem by
storing the arguments of all methods called in an an-
notated java program. This approach works well if the
method depends mainly on its arguments. The approach of
RoBler (2013) does not depend on recorded data, but tries
to reproduce program crashes based on process dumps
and randomized test methods. Finally, Yuan et al. (2010)
infer information about execution paths for reproducing
a failure by matching emitted log messages to lines in
the source code. In a following publication (Yuan et al.
(2012)), they reduce the number of possible executions
by extending the log messages in the source code with
additional variables.

I http://www.dspace.com
2 https://www.elektrobit.com
3 http://www.ros.org/

The main drawback of recording and replaying signal
traces is, that the inputs and outputs of a software
component only give a hint on the internal states. Many
influences mentioned in the introduction in Fig. 1 are not
regarded. Thus, due to randomness and other influence
factors, the internal states of a replay may drift apart from
the previously observed run that lead to a defect.

In contrast, the method presented in this paper:

e allows to exactly reproduce the internal state of a
software component at any time

e only needs data of one time instant to reproduce an
error as it is not necessary to replay the sequence up
to this time instant

e prevents the influence of timing, by decoupling the
communication and the cyclic execution

e allows to quickly find executions that clearly lead to
an error

e needs less disk space and overhead than capturing
signal traces

3. SERIALIZING AND DESERIALIZING SOFTWARE
COMPONENTS

The procedure for transferring the state of the software
system to an offline simulation environment requires two
parts:

e A method to store and restore the state of the
software system

e An offline simulation environment to analyze the
stored software state.

This section describes the method for storing and restoring
the states of the simulation system. First the chosen
serialization format is motivated. Section 3.2 describes how
the source code is annotated for serialization, followed by
a discussion on how the development process is adoped in
section 3.3. The final section 3.4 describes when and how
the serialization is triggered.

3.1 Choosing the serialization format

Storing the state of a software component means to serial-
ize it. There are several widely used formats for serialized
data. For example, Sumaray and Makki (2012) list “XML,
JSON, Thrift, and ProtoBuf”. For these formats, there
are tools for different programming languages to create
serialized data. The debugging approach described in this
paper has been applied to a component written in C++.
Therefore, the selected format has to be supported by
tools available in C++. Furthermore, the whole software
component is more complex than the data usually trans-
ferred over a network connection. Typical tools for creating
xml or json files require to explicitly set or read every
single data item. Plus, methods for reading and writing
potentially hidden information have to be implemented.
Google Protocol Buffer* additionally requires to write a
separate specification of the serialized data. This would be
difficult to maintain for a whole software component. In
contrast, boost serialization supports complex and nested

4 https://developers.google.com /protocol-buffers/

Download English Version:

https://daneshyari.com/en/article/708705

Download Persian Version:

https://daneshyari.com/article/708705

Daneshyari.com

https://daneshyari.com/en/article/708705
https://daneshyari.com/article/708705
https://daneshyari.com

