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Abstract—Simultaneous localization and mapping (SLAM) is
vital for autonomous robot navigation. The robot must build a
map of its environment while tracking its own motion through
that map. There are many ways to approach the problem, mostly
based on the sequential probabilistic approach, based around
extended Kalman filter (EKF) or the Rao-Blackwellized particle
filter. In order to improve the SLAM solution and to overcome
some of the EKF and PF limitations, especially when the process
and observation models contain uncertain parameters, we
propose to use a robust approach to solve the SLAM problem
based on variable structure theory. The new alternative called
Smooth Variable Structure Filter SVSF is a predictor corrector
estimator based on sliding mode control and estimation concepts.
It has been demonstrated that the (SVSF) is stable and very
robust face modeling uncertainties and noises. Visual SVSF-
SLAM is implemented, validated and compared with EKF-
SLAM filter. The comparison confirms the efficient and the
robustness of localization and mapping using SVSF-SLAM.
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L INTRODUCTION

The ability of a mobile robot to localize itself is critical to
its autonomous operation and navigation. A robot that
navigates using maps must be able to accurately localize itself.
Consequently, there has been considerable effort on the
problem of mobile robot localization and mapping. This
problem is known as simultaneous localization and mapping
SLAM and there is a vast amount of literature on this topic [1],

(2], 3]

SLAM is a technique used by mobile robots to build a map
of an unknown environment while simultaneously tracking its
own motion. This presents a chicken-and-egg situation: an
accurate map is necessary for localization, and accurate
localization is necessary to build a map. The interdependency
between the estimates of the robot location and the map of the
environment makes SLAM an interesting and difficult research
problem. There are many ways to approach the problem,
mostly based on the sequential probabilistic approach, based
around extended Kalman filter (EKF) [4] or the Rao-
Blackwellized particle filter [5].

The use of the classical solution to SLAM based on the
Extended Kalman Filter EKF-SLAM, displays several
shortcomings such as quadratic complexity and sensitivity to
incorrect feature tracking, problems due to the employment of
linearized models of nonlinear motion and observation models
and so inherits many caveats[2]. Nonlinearity and errors
modeling can be a significant problem for EKF-SLAM and
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leads to inevitable and sometimes dramatic, inconsistency in
solutions, further the assumption of Gaussian additive noise is
often violated, which affects the vehicle and map state
estimation and can lead to estimation process divergence.
Convergence and consistency can only be guaranteed in the
linear case with Gaussian additive noise

While EKF-SLAM and FastSLAM are the two most
popular solution methods, newer alternatives, which offer
much potential, have been proposed, including the use of the
unscented Kalman filter (UKF) proposed by Julier and
Uhlmann in SLAM [6]. Unlike the EKF, the UKF uses a set of
chosen samples to represent the state distribution. The UKF-
SLAM avoids the calculation of the Jacobian and Hessian
matrices but also obtain higher approximation accuracy with
the unscented transformation (UT). However, for high-
dimensional systems, the computation load is still heavy; thus,
the filter converges slowly. The cubature Kalman filter (CKF)
based on a cubature transform which is more accurate and its
complexity computation is lower than the one of the UKF was
used in SLAM [7]. The State Dependent Riccati Equations
(SDRE) nonlinear filtering formulation was also used with
SLAM which avoids the linearization step [8].

However, the above filters are all based on the framework
of the Kalman filter (KF); it can only achieve a good
performance under the assumption that process, observation
and noise model are accurately known. But in practice, the
prior noise statistic is usually unknown totally, and the process
and observation models may be not well known or contain
modeling uncertainties, thus, the state estimation will have
large errors, or, even, the filters will be possible to diverge.

To overcome some of these limitations, we propose to use
the SVSF filter to solve the SLAM problem. Introduced on
2007, the smoothing variable structure filter (SVSF) is
relatively a new filter [9]. It is a predictor correct estimator
based on sliding mode control and estimation concepts. The
SVSF is used for state and parameter estimation of dynamic
system whether linear or nonlinear [10] and tracking
applications [11]. Furthermore, it has been demonstrated that
the SVSF is extremely robust and stable to modeling
uncertainties and noise [9], [12].

In this work, we describe our efforts to investigate an
alternative to the EKF based data fusion. This alternative uses
the SVSF as a fusion filter for SLAM problem. We propose for
the first time a smoothing variable structure filter (SVSF)
implementation of SLAM algorithm using both robot wheel
encoders and stereo vision system. Our motivations behind
solving the SLAM problem using the SVSF is to overcome
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some EKF limitations and offer more robustness and stability
and less-cost computation to the robot pose and map
estimation. We first give an overview of the motion model of
our robot and the observation model used and also a brief of the
EKF-SLAM algorithm is presented. We give a summary of the
SVSF estimation process, and then we explain how the SVSF
is used to solve the SLAM problem with the derivation of some
of the equations. We then showcase some simulation results
from our implementation applied to theoretical datasets.
Finally, we draw some conclusions, some final remarks and
perspectives.

II.  ROBOT MOTION AND STEREO VISION SENSOR MODELS

A. Process Model

We proceed to model the movement of the robot and the
noise associated with it. We assume that the robot is operating
in planar environments Fig. 1, whose kinematic state, or pose,
is summarized by three variables (1):
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(2, ¥,) A

Figure 1. Robot configuration (Pionner 3-AT).

Where T is the sample period, we assume that the robot is
controlled by two velocities: a translational velocity v, and a
rotational velocity wy at sample k. We note the control input at
sample k by u, = (v, w;)T. With this control input and the
location of the robot at the previous time step we can estimate
the robot’s current location according to

xr-(k + D] |x,.(k) + vicos0 (k)T
Yol + D | 700 + viesind (OT @)
Ok+1) 0(k) + w, T

Riy1 = f(Ri, ug)- 3)

The model (2) states the kinematic for an ideal, noise-free
robot. In reality, robot motion is subject to noise, slip or lift.
The actual velocities differ from the measured once by
odometer sensor. We will model this difference by a random
variable, let:

5 Uy £

i = up +n_wy, = [wk] + [e:,] (4)

The measured velocity equals the true velocity plus some
small, additive noise n_w,, = (e, &,)7[6].

B. Observation Model

In order to execute SLAM the robot needs to be able to
choose and track appropriate reference or landmarks in the

environment to localize itself. These landmarks must be stable
and invariant.

In this work, we opt for a point landmark approach, where
the map is a collection of 3D landmark locations. So, how to
obtain relative measurement of the landmarks from the images
acquired from the stereo vision sensor?

Figure 2. Observation system geometry.

To validate in simulation the SVSF-SLAM algorithm, we
will not use real data, instead of this, theoretical datasets (a set
of 3D points) previously generated will be used. When the
robot is moving, it detects landmarks (3D points) that are
included in the vision sensor field Fig. 3.
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Figure 3. Sensor vision field.

As said previously, the stereo vision sensor provides
relative measurement Z = (L% L}, L})T of the landmarks
with respect to the robot frame, this measurement (observation)
will be noted Z.

The model representing the robot frame coordinates of an
individual landmark according to its global frame coordinates
L9 = (L] L L“Z’)T and the robot configuration R =

(x, y- 0)T is called the direct model observation and will be
noted:

Z = h(R,LY). )
Lz - Xy

Z = Mgg Li —Yr (6)
Lg -0

We denote Mpthe global to robot projection matrix:

cos(f) sin(8) O
Mgg = |—=sin (§) cos(8) 0 ™
0 0 1

In reality the observation (measurement) is subject to noise.
The real observation model is given in the following model:

Z = h(R,L9) + n_v,. (8)
Where n_vy, = (& &, €,)" is the measurement noise.

C. Inverse Observation Model

Regarding the dynamic nature of the SLAM algorithm, new
observed landmark must be initialized prior to be added to the
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