ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC-PapersOnLine 49-15 (2016) 218-223

Optimizing Triangle Mesh Reconstructions
of Planar Environments

Thomas Wiemann * Kai Lingemann ** Joachim Hertzberg ***

* Osnabriick University, Germany (twiemann@uni-osnabrueck.de)
** DFKI Robotics Innovation Center, Osnabriick Branch, Germany
(kai.lingemann@dfki. de)

** Osnabriick University and DFKI Robotics Innovation Center,
Osnabriick Branch, Germany (joachim.hertzberg@uni-osnabrueck.de)

Abstract:

Automatic surface reconstruction from point cloud data is an active field of research in
robotics, as polygonal representations are compact and geometrically precise. Standard meshing
algorithms produce many redundant triangles. Therefore methods for optimization are required.
In this paper we present and evaluate a mesh optimization algorithm for robotic applications
that was specially designed to exploit the planar structure of typical indoor environments.

© 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: 3D Mapping, Surface Reconstruction, Mesh Optimization, Segmentation

1. INTRODUCTION

Reconstruction of polygonal models from point cloud data
has recently drawn much attention in the robotics commu-
nity (Wiemann et al., 2013; Karpathy et al., 2013; Giinther
et al., 2013). Especially KinectFusion (Izadi et al., 2011)
and other methods that rely on RGB-D cameras (Stein-
bruecker et al., 2014) are of interest, since they allow
large areas to be reconstructed using low cost sensors in
near real time by exploiting the regular structure of the
depth images of such cameras. Besides these RGB-D based
methods, the Las Vegas Surface Reconstruction Toolkit
(LVR)! (Wiemann, 2014; Rinnewitz et al., 2013) provides
efficient methods for reconstruction from arbitrary point
clouds with focus on high resolution laser scans. The
reconstructed surfaces are usually represented as triangle
meshes. Together with bitmap textures generated from
color data, such meshes can be rendered efficiently.

Triangle meshes reduce the amount of data that is needed
to represent an environment significantly compared to
the raw point cloud data. However, basic reconstruction
methods usually produce more triangles than needed for a
memory efficient environment representation, especially in
the presence of planar surfaces. In this paper we present
a method to reduce the number of triangles in polygonal
meshes of planar environments drastically without losing
geometric precision. This method is evaluated in detail and
compared with the state of the art.

2. RELATED WORK

Surface reconstruction from point cloud data is a classic
field of research in computer graphics. Mostly Marching
Cubes based methods (Lorensen and Cline, 1987) are used
to compute triangle meshes. In order to use this method,
an implicit mathematical representation of the scanned

1 http://www.las-vegas.uni-osnabrueck.de

surfaces is needed. State of the art is the use of signed
distance functions as introduced in Hoppe et al. (1992)
for local approximation. Poisson Reconstruction (Kazhdan
et al., 2006) tries to find a global representation by inter-
preting the search for an appropriate implicit function as
a Poisson Problem that can be solved numerically. Besides
Marching Cubes, algorithms for direct triangulation of
point clouds like Power Crust (Amenta et al., 2001) or
Alpha Shapes (H. Edelsbrunner and E.P. Micke, 1994)
can be used. A detailed evaluation of freely available re-
construction methods is given in (Wiemann et al., 2015).

Mesh optimization is usually done by iteratively removing
triangles via edge collapses. In this process, the edge
between two adjacent triangles is collapsed to a single
new vertex, such that these two triangles are deleted
and the area of the adjacent triangles is increased. To
determine the edges that can be safely removed without
altering the geometry too much, several metrics have been
proposed. A simple and fast metric is presented in Melax
(1998) in the context of mesh optimization in computer
games. Garland and Heckbert (1997) use quadric error
metrics to determine the local error and to compute a
new vertex position in the edge collapse process. Hoppe’s
mesh optimization (Hoppe et al., 1992) is based on a
global energy function that takes vertex count, convexity
and squared distance towards the initial data points into
account.

In this kind of optimization elements are removed from
the mesh until a user given quality threshold is violated
or a predefined mesh size is reached. Our approach is
different from these methods, since it is based on planar
optimization via region growing. The idea is to detect
planar patches in the reconstruction and to compute
an alternative triangulation of these areas using as few
triangles as possible. In non-planar regions no triangles will
be removed to maintain geometric accuracy, as described
in the next section.

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2016.07.735

Thomas Wiemann et al. / IFAC-PapersOnLine 49-15 (2016) 218-223 219

3. PLANAR OPTIMIZATION

The planar optimization algorithm is an extension of the
mesh optimization procedure presented in Wiemann et al.
(2012). Besides the region growing based approach pre-
sented in this paper, we added further processing steps to
improve the quality of the optimized meshes, especially
for reconstructions of environments that display mostly
planar surfaces like typical robotic indoor scenarios. The
procedure consists of the following steps: Iterative plane
segmentation based on the region growing approach of
Wiemann et al. (2012), optimization of the vertex posi-
tions between planar regions, contour extraction and re-
triangulation. The details of the single steps are presented
in the following sections. The first step in the optimization
process is recapitulated from Wiemann et al. (2012) to
make this paper self-contained.

3.1 Plane Segmentation

The first step in our optimization procedure is to detect
planes in the initial triangle mesh via region growing in a
half edge representation. This data structure allows to find
the neighbors of a triangle in constant time. Two adjacent
triangles are assumed to belong to the same plane, if the
angle between their normals is below a given threshold.
To extract all planes, we start with some triangle and
check if adjacent triangles have a similar normal, i.e., the
angle between the normals is below a given threshold.
For all neighboring triangles that fulfill this condition,
the search is recursively continued until the border of a
planar region is found. These border edges are stored in
a list that represents the contour of the planar region.
After all recursive searches from the starting triangle have
stopped, a search with a new, previously unvisited triangle,
is started as described in Algorithm 1.

Algorithm 1 The mesh simplification algorithm.

function SIMPLIFY
for all faces do
currentFace <+ visited
Fusg(currentNormal, currentFace, currentList)
borderList < currentList
CREATEPOLYGON(borderList)
currentList <— empty
end for
end function

function Fusg(startNormal, currentFace, listOfBorders)
currentFace < visited
for all neighbors of currentFace do
angle < startNormal - neighborNormal
if angle < e and neighbor not visited then
Fusg(startNormal, neighbor, listOfBorders)
else
listOfBorders <— border edge to neighbor
end if
end for
end function

This region growing algorithm produces a list of clusters
with more or less co-planar triangles. To flatten the regions
and remove artifacts originating from sensor noise all
triangle vertices of a cluster are projected into a common
regression plane with a RANSAC approach. All triangles

in the cluster now share the same normal. This may cause
that the normal criterion between two neighboring clusters
is now fulfilled. To further fuse such adjacent co-planar
regions, we re-start the region growing algorithm for each
cluster after the regression planes were calculated. This
optimization is continued, until no new merges occur.
This iterative plane optimization is especially effective for
reconstructions from noisy data, as Fig. 1 demonstrates.

The displayed reconstruction is based on point clouds
collected with a servo-tilted SICK LMS 200 laser scanner
in an office building. Each detected plane is rendered in
a different color. In the first step, due to noise in the
servo movement of the used low cost 3D scanner, the
ceiling plane is fragmented into several planar regions.
After several iterations, neighboring planes are fused until
nearly the complete ceiling is represented by a single plane.

3.2 Vertex Optimization of Plane Intersections

Usually meshing algorithms have significant problems in
reconstructing sharp features. After plane segmentation
it is possible to calculate the exact intersections between
intersecting planes. If two planes P; and P, intersect, they
lie on a straight line S = Pg + td with direction d. This
direction has to be perpendicular to the normals n; and
n, of the adjacent planes. Thus d = n; X ny. Pg has to
be in a plane perpendicular to P; and P, like the one
that is spanned by n; and ns, therefore it follows that
Po = kiny + kany. The parameters k1 and ks can be
determined be solving the following equation system

ng - (k1n1 + kgnz) =d;
ns - (k1n1 + kgnz) = d2

which can be solved directly:

]{11 = (dl(nz . 1’12) — d2(n1 . nz))/t
k‘g = (dg(nl . 1’11) — dl(n2 . 1’12))/t

with t = (ny - n;)(ny - n2) — (ny - nz)2. To optimize the
representation of the intersections, all vertices of a plane’s
contour that are near that line are projected onto it. An
example for such an projection is given in Fig. 2

3.8 Contour Extraction and Re-Triangulation

After the contours and intersections of the planes are
extracted, edges that point into the same direction are
fused to reduce the number of vertices needed to represent
the contour. For example, in the initial Marching Cubes
reconstructions the length of an edge is limited w.r.t. the
resolution of the voxel grid that was used to compute the
mesh, as can be witnessed in Fig. 2, where the edges lying
on the optimized line are still sub-divided according to
the used voxel size. To fuse such edges, we apply the well
known Douglas-Peucker-Algorithm (Douglas and Peucker,
1973).

This algorithm generates the optimized contour recur-
sively. Initially the first and last vertex of the contour
are connected. Then the vertex with the largest distance
to this line within an error tolerance is detected. This
vertex sub-divides the line into two segments that then

Download English Version:

https://daneshyari.com/en/article/708733

Download Persian Version:

https://daneshyari.com/article/708733

Daneshyari.com

https://daneshyari.com/en/article/708733
https://daneshyari.com/article/708733
https://daneshyari.com/

