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Abstract: This paper applies Posterior Cramer-Rao Bound theory to the SLAM problem to
measure the information supplied by different sensor modalities over time. Range-only, bearing-
only and full range-bearing sensors were considered, as well as the gain in information achieved
by using multiple sensors in centralized co-operative SLAM. An efficient recursive formula was
used to compute the bound for a set of simulated scenarios, and its validity verified by comparing
the bound with the second-order error performance of FastSLAM 2.0 and the EKF.
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1. INTRODUCTION

The Simultaneous Localisation and Mapping (SLAM)
problem requires a mobile robot to use measurements from
an on-board sensor to construct a map of its environment
as it moves through it, while simultaneously estimating its
own location within the map. This is an essential capability
for any robot to navigate and function truly autonomously
in a unknown environment. While several approaches to
SLAM exist (Thrun et al., 2005), developing efficient and
robust SLAM algorithms for real-world applications con-
tinues to generate significant interest.

SLAM is fundamentally a dynamic state estimation prob-
lem. This study focuses on feature-based SLAM, which
models the features of interest in the environment as
discrete points called landmarks. The map is a vector con-
taining the landmark co-ordinates. Feature-based SLAM is
typically formulated as a discrete-time, non-linear filtering
problem, in which the state vector consists of the robot’s
position and orientation (the pose), and the map. As the
pose evolves stochastically with time, noisy measurements
of the landmarks must be used to estimate the full state.

This paper applies a useful result from estimation theory
to the SLAM problem. The Cramer-Rao bound is a lower
bound on the mean square error (MSE) of an unbiased
estimator. Since any SLAM algorithm is at its core, an es-
timator, the Cramer-Rao Bound provides a natural bench-
mark for assessing its second-order error performance.

The original Cramer-Rao Bound applies to the estimation
of a deterministic but unknown parameter. A Bayesian
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version of the bound exists for estimating random param-
eters (Van Trees and Bell, 2013), which is often referred to
as the Posterior Cramer-Rao Bound (PCRB) or Bayesian
Cramer-Rao Bound. A Bayesian framework relaxes the
assumption that the estimator is unbiased, and the bound
can thus be safely applied to non-linear filtering problems.
Tichavsky et al. (1998) used the PCRB to derive an effi-
cient recursive formula that computes a lower bound on
the MSE at each time-step. It is this recursive PCRB that
we apply to SLAM.

The recursive PCRB has been used extensively in the
target tracking literature as a benchmark that quantifies
optimal filtering performance (Hernandez et al., in press).
Although the bound is typically not achievable, a filter
achieving accuracy close to the bound has little room for
improvement.

The PCRB itself is a covariance matrix, the inverse of
which is the Bayesian Information Matriz (BIM). The
BIM intuitively measures the amount of information about
the state that can be extracted from the observations and
any prior knowledge, based on the assumed probability
distributions (Bar-Shalom et al., 2004). It plays a similar
role to the Fisher Information Matrix for a deterministic
parameter. Thus the recursive PCRB represents the avail-
ability of information over time, with a low valued bound
reflecting high information content. This information mea-
sure is independent of the filtering algorithm chosen, and
limits the accuracy that can be achieved with the given
hardware and sensors. We use the PCRB to investigate the
flow of information provided by different sensor modalities,
and the gains achieved by using multiple sensors.

While some sensors measure both range and bearing with
relatively high accuracy (e.g. lidar), others have just one
dominant mode of sensing. Typically active sensors will
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obtain accurate range measurements, but some (e.g. radar,
sonar) can have a low resolution in bearing. Conversely,
certain passive sensors (e.g. monocular vision cameras)
will obtain accurate bearing measurements but cannot
measure range. Economic or environmental constraints
may necessitate the use of these types of sensors. We
therefore consider the PCRB for range-only (RO), bearing-
only (BO), and full range-bearing (RB) sensors, which
covers a wide range of the available sensing modalities.

The use of multiple sensors via co-operative SLAM (C-
SLAM) has gained a lot of attention, as it provides redun-
dancy and the potential for faster exploration. Increasing
the number of sensors should intuitively provide more
information about the state, and this effect is investigated
using the PCRB. We assumed a centralized architecture,
in which all agents send their estimates to a fusion centre
that performs the filtering.

The PCRB has not previously seen widespread use in
the context of SLAM. Jiang et al. (2005) computed the
PCRB for a single robot traversing a circular path, how-
ever their results showed the EKF MSE starting below
the bound, which indicates improper initialization. Ahmad
and Namerikawa (2011) used the PCRB to derive upper
and lower bounds on the EKF error covariance for SLAM
with intermittent measurements. Feder et al. (1999) used
the BIM as a performance metric for Active SLAM, closing
the loop by applying controls that maximise the informa-
tion gain.

2. MULTI-AGENT SLAM FORMULATION

The SLAM problem is formulated below for an arbitrary
number of agents, n. We adopt a centralized architecture
which follows the formulation of Fenwick et al. (2002),
except that we assume agents do not observe each other.
This means that improvements in the bound are solely
due to gaining more information about the map. It is
assumed that the agents have access to the same reference
frame. Since we seek a lower bound on MSE, which is
an upper bound on accuracy, we also assume the best
case scenario of perfect data association, implying that
the agents can uniquely identify each landmark that is
observed. We consider plane motion in a 2-D environment
for simplicity.

Let s'[k] = [X[k] Y?[k] ¢'[k]]T represent the pose of
agent i at time-step k, where (X'[k], Y[k]) € R? indicates
position, and ¢¢[k] € R is the angle at which the robot is
oriented relative to the X-axis.

It is common practice in single-agent SLAM to define the
initial pose of the robot as the origin of the global co-
ordinate system. We define the origin as the initial pose
of the first agent, so that s1[0] = [0 0 0]7, and we assume
that all other agents have perfect knowledge of their initial
pose with respect to this co-ordinate system.

Let £; = [X; Y;]7 be the coordinates of landmark j,

and define the map as m = [Z{, . ,é%]T. Note that in
general, superscripts will relate to agents and subscripts
to landmarks, unless otherwise specified.

2.1 Dynamic Model

Define the state vector as - '
x[k] = [s'[k]T ... s"[k]T mT]", and let w'[k] be the

control input to agent i. Let function fI(s‘[k], u‘[k]) model
the agent’s dynamics so that the full state equation is given
by

s'[k] fi(s'[k=1],u'[k—1]) vt [k—1]
= : : (1)
s" (k] [ (s"[k—1],u"[k—1]) U"[%—l]

where v?[k] ~ N(0,Q'[k]) is a random variable that models
uncertainty in the dynamics. This is called the process
noise, and we assume it is independent of the state and
uncorrelated in time. The state equation can be condensed
to form

x[k] = £(x[k—1], ulk—1]) + v[k—1], 2)
v[k—1] ~ N (0,Q[k—1]). (3)

2.2 Observation Model

The measurement of landmark j by sensor i at time k is
given by the observation model

#[k] = h(s'[k], £;) + wj][k], (4)
wj[k] ~ N (0, R'[k]), (5)

where w’[k| is the measurement noise, also uncorrelated

in time and independent of the state.

The observation function for a typical range-bearing sensor
is given by

V(X = XT[R])? + (v; — Y[k])?

h(si[k]’gj) - atan2(Y; — Yi[k?]vXj — X'[k]) — ¢'[K]

Define z[k] to be the vector containing all measurements
from all sensors at time k. Let

h(sh [k]a éjl)

hy, (x[k]) = :
h(slN [k]v éjM)

select only the observations corresponding to the land-
marks detected at time k and the agents that observed

them, which causes the dimension of z[k] to change ac-
cordingly.

The observation model can then be written as

z[k] = hy.(x[k]) + w(k], (7)
w(k] ~ N(0,R[k]). (8)

We assume w[k| and v[k] are independent of each other
and the state.

It should be noted that this does not precisely model the
limited detection range of the sensor. To do this more
rigorously, z[k] could remain a constant dimension, but the
w; [k] corresponding to landmarks outside the detection
range be assigned an infinite covariance reflecting the
lack of information supplied. This would make R[k] state-
dependant, which is not permitted by the recursive PCRB
equations that we use (refer to Section 3.1). The model (7)
- (8) is therefore an approximation which has independent
measurement noise.
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