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Abstract: Consensus control of a class of multiagent systems with general linear dynamics is
studied. Based on solution of some linear matrix inequalities, a protocol is obtained which
guarantees achieving consensus among agents in the presences of stochastically switching
topologies. By invoking the concept super-martingales, it is shown that if the probability
of the network connectivity is not zero, the agents reach almost sure consensus upon their
state vectors. Despite existing results in the literature for consensus control of general linear
multiagent systems under stochastic networks, the proposed consensus protocol in this paper
requires no knowledge on the set of feasible topologies, and this issue significantly decreases the
design computational costs. Simulation results for a diving consensus problem among a team of
autonomous underwater vehicles validate the proposed consensus protocol.
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1. INTRODUCTION

In each distributed cooperative mission, there are some
quantities of interests should be identical for all agents.
These quantities can be determined by a supervisor when
the agents are commanded via a central controller. How-
ever, in decentralized autonomous multiagent systems
(MASs), the agents should reach consensus upon these
quantities via an interaction protocol. Hence, the consen-
sus problem is one of interesting topics in MASs decen-
tralized control with a broad range of applications from
formation and flocking control of multivehicle systems to
data fusion in sensory networks [Ren (2007); Rezaee and
Abdollahi (2015b, 2014); Olfati-Saber (2007)].

The consensus problem first was studied for networks of
first-order kinematics from various perspectives in which
velocities were the control commands of the agents [Olfati-
Saber and Murray (2004); Olfati-Saber et al. (2007); Ren
et al. (2007)]. However, in practice, a large number of
systems and vehicles are actuated by forces and torques.
In this condition, it is necessary to consider second-
order dynamics to describe the agents behaviors, and
therefore the consensus problem in second-order dynamics
was widely investigated [Ren (2007); Cheng et al. (2011);
Qin et al. (2012)]. Furthermore, in some systems and
vehicles such as unmanned helicopters and autonomous
underwater vehicles (AUVs) [Kaloust et al. (1997); Saboori
and Khorasani (2014)], the agents just can be described
by higher-order differential equations. Accordingly, the
consensus problem in high-order MASs has been a more

challenging problem studied in the literature as well [He
and Cao (2011); Rezaee and Abdollahi (2015a, 2016);
Saboori and Khorasani (2014)].

One of main problems in consensus control of networked
systems is reaching consensus in the presences of stochastic
topologies. For instance, in a rendezvous problem among a
team of mobile agents, due to environmental obstacles or
stochastic properties of electronic, power, and communica-
tion devices, some links may fail and rebuild stochastically.
Hence, the communication topology of the MAS is stochas-
tically switching, and in this condition, the existing pro-
tocols for deterministic networks cannot guarantee achiev-
ing consensus in the MAS. Therefore, some studies have
been dedicated to the consensus problem in MASs under
stochastic topologies. Most of those studies have been de-
voted to MASs modeled by simple first-order kinematics.
For instance, in [Hatano and Mesbahi (2005)], achieving
consensus under undirected networks was studied. Those
results were extended to directed networks in [Wu (2006)]
and [Fagnani and Zampieri (2008)] and to weighted di-
rected networks in [Porfiri and Stilwell (2007)] and [Porfiri
et al. (2008)] as well, and necessary and sufficient condi-
tions for achieving consensus in terms of ergodicity of net-
works topologies were studied in [Tahbaz-Salehi and Jad-
babaie (2008)] and [Tahbaz-Salehi and Jadbabaie (2010)].
In addition to the aforementioned approaches dedicated
to first-order stochastic networks, a few studies have been
devoted to stochastic networks with higher-order models
as well. For instance, in [Li et al. (2015)], by considering
some restrictive conditions on the average of switching
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topologies, the consensus problem over second-order MASs
with Lipschitz nonlinearities was addressed. The consensus
problem over high-order MASs with general linear models
under stochastic networks was studied in [Vengertsev et al.
(2015)]. However, in that approach, the eigenvalues of the
coupling matrices of all feasible topologies should be avail-
able to design the gains of a consensus protocol. It is clear
that increasing the number of agents led to an increase
in the number of feasible topologies. For instance, the
number of feasible topologies for networks of four and six
agents may be 26 and 215, respectively. In that condition,
to design a consensus protocol, in order to analyze the
eigenvalues of the coupling matrices, a huge computation
was required. A similar problem existed with the consensus
protocol proposed in [Zhou and Xiao (2013)]. Moreover, in
[Sun et al. (2012)], a criterion for stochastic cooperative
convergence of second- and high-order stochastic networks
was proposed. However, no strategy to guarantee achieving
consensus was proposed in that paper.

Considering the above-mentioned issues, because of using
the information of the set of feasible topologies in design-
ing consensus protocols, the existing results for consensus
control of stochastic networks with high-order dynamical
models were not easily scalable. Considering this problem,
in this paper, a consensus protocol for a network of gen-
eral linear dynamics is studied. The network topology is
considered dynamically changing and existence of commu-
nication links among the agents is considered stochastic
and stochastically independent. Based on the concept of
super-martingales, we will show that if the probability of
the network connectivity is not zero, almost sure consensus
can be guaranteed, while the network topology may not be
connected constantly. Despite the existing results in the
literature, the consensus protocol proposed in this paper
can be designed independent of the information of the set
of the network feasible topologies.

The paper organization is as follows. Preliminaries are pro-
vided in the next section. The main results are presented
in Section 3. Simulation results are given in Section 4, and
Section 5 concludes the paper.

2. PRELIMINARIES

In this section, notations and some concepts and defini-
tions on graph theory and stochastic processes are pre-
sented.

2.1 Notations

R and R+ express the set of real and positive real numbers,
respectively. In is an n × n identity matrix. 1n expresses
an n × 1 vector of ones. 0n×m denotes an n × m matrix
of zeros. lim stands for limit. ⊗ stands for the Kronecker
product. Let M > 0 and M ≥ 0 if M is symmetric positive
definite and symmetric positive semi-definite, respectively.
Accordingly, M is symmetric negative (semi-)definite if
−M is symmetric positive (semi-)definite. v(p) denotes a
stochastic switching parameter where p ∈ {1, 2, . . . , nv}
is the index associated with the switching set (with nv

members) and changes stochastically over time. ‖ · ‖
denotes the standard Euclidian norm. E{·} and P{·}
are the expected value and probability of a stochastic

variable, respectively. E{X|H} is the conditional expected
value of X given an event H. rank(·) denotes the rank.
nullity(·) denotes the dimension of the null space, and ‘a.s.’
represents almost surely.

2.2 Graph Theory

The MAS network topology is expressed by an undirected
graph G = (V, E ,A) where V = {1, 2, . . . , N}, N > 1, is
the set of N nodes or agents, E =

{
(i, j)

∣∣i �= j, i, j ∈ V
}

expresses the set of edges or links which an edge (i, j)
means that the ith agent exchanges information with the
jth one, and A = [aij ] ∈ RN×N is the adjacency matrix
associated with G where aij = aji = 1 if (i, j) ∈ E and
aij = aji = 0 otherwise. Moreover, an undirected graph
is connected if all of its pair nodes are connected via a
sequence of edges called a path.

Now, the Laplacian matrix L = [�ij ] ∈ RN×N associated
with G can be stated as

�ij =




N∑
i=1,i�=j

aij i = j,

−aij i �= j

which has rows/columns with zero entries summation.
It can be said that in the case of connected graph, L
has a zero eigenvalue and other eigenvalues of L are in
the open right half plane. Furthermore, the right and
left eigenvectors associated with this zero eigenvalue are
1N/

√
N [Li et al. (2013)].

2.3 Stochastic Processes

We model a stochastic process with the probability triple
(Ω,F ,P) where Ω denotes the space of events, F is a σ-
algebra on Ω defined as subsets of Ω closed under union
and complement operations, and P denotes a probability
measure on (Ω,F) where 0 ≤ P{·} ≤ 1 and P{Ω} = 1
[Williams (1991)].

A filtration {Ft, t ≥ 0} on (Ω,F ,P) can be defined as a
family of sub σ-algebras of F where

Fs ⊂ Ft, s < t.

In this condition, a stochastic process X =
{
X(t), t ≥ 0

}
is called to be adapted to the filtration {Ft} if X(t) is
Ft-measurable for each t ≥ 0, i.e., X(t) only depends on
{Fs, 0 ≤ s ≤ t}. Now, a process X is a called a super-
martingale relative to {Ft} and P if (Mahmoud et al.,
2003, Sec. 4.4.1),(Williams, 1991, Chap. 10)

i) X is adapted to the filtration {Ft},
ii) E

{∣∣X(t)
∣∣} < ∞, ∀t,

iii) E
{
X(t)

∣∣Fs

}
≤ X(s), t > s.

Now, we introduce two well known criteria for convergence
of stochastic variables [Tempo et al. (2013)]:

- A stochastic variable X(t) converges to X∞ in the
sense of probability if for any ε ∈ R+,

lim
t→∞

P
{∣∣X(t)−X∞

∣∣ ≥ ε
}
= 0.

- A stochastic variable X(t) almost surely converges to
X∞ if

P
{

lim
t→∞

X(t) = X∞
}
= 1.
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