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1. INTRODUCTION

Multidimensional (nD) systems, in particular, the 2D
case, have been receiving much attention in recent years.
Examples of such systems include distributed parameter
systems (see Cichy et al. (2008); Dullerud and D’Andrea
(2004); Rabenstein and Trautmann (2003)), disturbance
propagation (see Knorn and Middleton (2013); Li et al.
(2005)), etc. Among various interpretations and realiza-
tions of 2D systems are repetitive processes (see Rogers
et al. (2007); Rogers and Owens (1992)): systems whose
independent variables have temporal semantics with one
variable describing time as if in a conventional (1D) dy-
namic system, and another specifying the number of an
iteration. The mental model of such a system is a sequence
of trajectories of a fixed length constructed in such a way
that the output variable as a function of (conventional)
time would approach the desired profile. The combined
2D system thus obtained essentially encodes an iterative
learning problem (Paszke (2005); Hladowski et al. (2010)).
For example, teaching the continuous system

ẋk(t) = Axk(t) +Buk(t), yk(t) = Cxk(t),

to follow the desired trajectory yd(t) on t ∈ [0;T ] for a
given T , can be represented as a 2D system

[ η̇k(t) ek+1(t) ]
T
= M [ ηk(t) ek(t) ]

T
,

where ek(t) = yd(t) − yk(t) is the tracking error, ηk(t) =∫ t

0
xk+1(τ) − xk(τ) dτ , and M depends on A, B, C, and

coefficient matrices defining the control law. Convergence
of the learning process in this setup is equivalent to the
2D system’s stability. Applications of these can be found
in fields like chemical batch processes, metal rolling, or
coal mining (see the references above).

Analysis of 2D systems is, in a way, similar to more con-
ventional dynamic system analysis, e.g., stability checking
and performance estimation. However, complexity of tests
and computational burden are significantly higher.
� This work has been supported by Ministry of Education and
Science of Russia, grant 2.1748.2014/K.

There are various approaches to analysis of 2D systems.
They are generally based on characteristic polynomials
or multinomials (see, e.g., Agathoklis et al. (1993) for
the double-discrete case, and Rogers and Owens (2002)
for continuous-discrete time systems), or specialized Lya-
punov functions. The latter allow using techniques based
on linear matrix inequalities (LMIs) and convex optimiza-
tion. They also support more complex types of analy-
sis/synthesis problems (see, e.g., Paszke et al. (2011)). An
interesting method—which forms a basis for this paper’s
results—is to find a way to extend LMI systems used for
1D systems’ stability and performance analysis to make
them applicable to 2D systems. This (nontrivial) process
yields problems of determining positivity of matrix polyno-
mials that can be treated as sum-of-squares (SOS) prob-
lems and ultimately recast in semidefinite programming
forms. A uniform treatment of 2D system stability and
H∞ and H2 performance estimation can be found in Chesi
and Middleton (2014, 2015). Further details are provided
in section 2.1.

Approaches based on Lyapunov functions and generally
matrix inequalities can often provide necessary and suf-
ficient conditions in terms of polynomial or linear ma-
trix inequalities (PMIs and LMIs, respectively). However,
when such conditions are obtained, they are not always
practical to check due to their numerical complexity. This
issue can be partially solved by, e.g., replacing PMIs with
their approximations. This introduces a degree of con-
servativeness, but a proper strategy of constructing se-
quences, or hierarchies, of such approximations may result
in eventually necessary and sufficient conditions. See Chesi
and Middleton (2014); Henrion and Lasserre (2006) for
examples of such sequences.

Section 2 of this paper presents the problems and relevant
background information from existing works. A possible
way—proposed earlier by the author—to tackle the numer-
ical complexity issue is described in section 3. The main
contribution of this paper is provided in sections 4 and 5;
section 6 shows numerical examples.
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et al. (2007); Rogers and Owens (1992)): systems whose
independent variables have temporal semantics with one
variable describing time as if in a conventional (1D) dy-
namic system, and another specifying the number of an
iteration. The mental model of such a system is a sequence
of trajectories of a fixed length constructed in such a way
that the output variable as a function of (conventional)
time would approach the desired profile. The combined
2D system thus obtained essentially encodes an iterative
learning problem (Paszke (2005); Hladowski et al. (2010)).
For example, teaching the continuous system

ẋk(t) = Axk(t) +Buk(t), yk(t) = Cxk(t),

to follow the desired trajectory yd(t) on t ∈ [0;T ] for a
given T , can be represented as a 2D system

[ η̇k(t) ek+1(t) ]
T
= M [ ηk(t) ek(t) ]

T
,

where ek(t) = yd(t) − yk(t) is the tracking error, ηk(t) =∫ t

0
xk+1(τ) − xk(τ) dτ , and M depends on A, B, C, and

coefficient matrices defining the control law. Convergence
of the learning process in this setup is equivalent to the
2D system’s stability. Applications of these can be found
in fields like chemical batch processes, metal rolling, or
coal mining (see the references above).

Analysis of 2D systems is, in a way, similar to more con-
ventional dynamic system analysis, e.g., stability checking
and performance estimation. However, complexity of tests
and computational burden are significantly higher.
� This work has been supported by Ministry of Education and
Science of Russia, grant 2.1748.2014/K.

There are various approaches to analysis of 2D systems.
They are generally based on characteristic polynomials
or multinomials (see, e.g., Agathoklis et al. (1993) for
the double-discrete case, and Rogers and Owens (2002)
for continuous-discrete time systems), or specialized Lya-
punov functions. The latter allow using techniques based
on linear matrix inequalities (LMIs) and convex optimiza-
tion. They also support more complex types of analy-
sis/synthesis problems (see, e.g., Paszke et al. (2011)). An
interesting method—which forms a basis for this paper’s
results—is to find a way to extend LMI systems used for
1D systems’ stability and performance analysis to make
them applicable to 2D systems. This (nontrivial) process
yields problems of determining positivity of matrix polyno-
mials that can be treated as sum-of-squares (SOS) prob-
lems and ultimately recast in semidefinite programming
forms. A uniform treatment of 2D system stability and
H∞ and H2 performance estimation can be found in Chesi
and Middleton (2014, 2015). Further details are provided
in section 2.1.

Approaches based on Lyapunov functions and generally
matrix inequalities can often provide necessary and suf-
ficient conditions in terms of polynomial or linear ma-
trix inequalities (PMIs and LMIs, respectively). However,
when such conditions are obtained, they are not always
practical to check due to their numerical complexity. This
issue can be partially solved by, e.g., replacing PMIs with
their approximations. This introduces a degree of con-
servativeness, but a proper strategy of constructing se-
quences, or hierarchies, of such approximations may result
in eventually necessary and sufficient conditions. See Chesi
and Middleton (2014); Henrion and Lasserre (2006) for
examples of such sequences.

Section 2 of this paper presents the problems and relevant
background information from existing works. A possible
way—proposed earlier by the author—to tackle the numer-
ical complexity issue is described in section 3. The main
contribution of this paper is provided in sections 4 and 5;
section 6 shows numerical examples.
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2. BACKGROUND

2.1 2D Systems

2D systems have a number of representations. In this
paper, we consider 2D mixed continuous-discrete-time
repetitive processes that can be written down as

d

dt
xc(t, k) = Accxc(t, k) +Acdxd(t, k) +Bcu(t, k),

xd(t, k + 1) = Adcxc(t, k) +Addxd(t, k) +Bdu(t, k),

y(t, k) = Ccxc(t, k) + Cdxd(t, k) +Du(t, k),

(1)

where t ∈ R and k ∈ N0 are the continuous and discrete
time variables, xc ∈ Rnc and xd ∈ Rnd are the continuous
and discrete states, and the rest of notation keep their
general meaning.

For H∞ performance analysis of (1), the paper Chesi and
Middleton (2014) proposes a method for finding upper
bounds γ̂∞(2d) of the H∞ performance

γ∞ = sup
ω,θ

∥∥Q(ejθ, jω)
∥∥
2
,

where Q(z, s) ∈ Cny×nu is the transfer function from the
Laplace-Z transform of u(t, k) to the Laplace transform of
y(t, k):

Q(z, s) = F3(s)(zI − F1(s))
−1F2(s) + F4(s),

F1(s) = Adc(sI −Acc)
−1Acd +Add,

F2(s) = Adc(sI −Acc)
−1Bc +Bd,

F3(s) = Cc(sI −Acc)
−1Acd + Cd,

F4(s) = Cc(sI −Acc)
−1Bc +D.

These bounds are calculated as γ̂∞(2d) =

√
ξ̂(2d), where

ξ̂(2d) is a solution to the following problem:

ξ̂(2d) = inf
P,ξ,c

ξ,

∀ω ∈ R : V (ξ, ω)− c |g(jω)|2 I ≥ 0,

c > 0,

deg(P (ω)) = 2d,

(2)

where ξ, c ∈ R; P (ω) ∈ Cnd×nd is a Hermitian matrix
polynomial of a pre-chosen degree 2d; g(s) = det(sI−Acc);
and

V (ξ, ω) = |g(jω)|2




P (ω) F1(jω)P (ω) F2(jω) 0

∗ P (ω) 0 P (ω)F3(jω)
H

∗ ∗ I F4(jω)
H

∗ ∗ ∗ ξI


 .

Note that V (ξ, ω) and the left hand side of the matrix
inequality constraint in the above system are matrix
polynomials, not rational functions. Conservatism of these
bounds is directly dependent on the degree 2d of P (ω). A
theorem is provided for determining whether the bound is
tight (γ∞ = γ̂∞(2d)).

FindingH2 performance of a stable system (1) is described
in Chesi and Middleton (2015) using a computational
scheme somewhat similar to the above. We need to choose
an upper bound 2d for an expected degree of a Hermitian
matrix polynomial W (ω). After that, we look for W (ω)
and ε such that

∀ω ∈ R : |g(jω)|2 (W (ω)− F1(ω)W (ω)F1(ω)
H−

− v(ω)F2(ω)F2(ω)
H − εv(ω)I) ≥ 0,

∀ω ∈ R : W (ω)− εv(ω)I ≥ 0,

ε > 0,

deg(W (ω)) ≤ 2d− 2,

where v(ω) = (1 + ω2)d. H2 performance γ2 does not
exceed

√
ζ with ζ = 1

2π

∫∞
−∞ φ(ω) dω,

φ(ω) = tr(F3(ω)WRAT (ω)F3(ω)
H + F4(ω)F4(ω)

H),

WRAT (ω) = W (ω)/v(ω).

The paper also specifies a way to estimate deviation of the
discovered bound from the actual performance value.

2.2 Polynomial Matrix Inequality Systems

Consider the problem of finding global extrema of a
polynomial function over a region defined by PMIs:

f∗ = min
x

f(x),

Gi(x) ≥ 0,

x ∈ Rn, Gi(x) = GT
i (x) ∈ Rni×ni , i = 1, . . . ,m,

(3)

where f(x) and elements of Gi(x) are (not necessarily
convex) polynomials, and the inequality sign in (3) denotes
positive semidefiniteness. Hereafter, these problems will be
called PMI problems.

In Henrion and Lasserre (2005, 2006); Lasserre (2001),
a solution method for this kind of problems has been
proposed. It was based on constructing a hierarchy of LMI
relaxations that would approximate the original problem
in the space of its indeterminates’ moments. An LMI
relaxation in this context is a system of the following kind:

f∗ = min
y

∑
i

fiyi,

Mk(y) ≥ 0,

Mk−di
(Gi, y) ≥ 0, i = 1, . . . ,m,

y1 = 1,

where k is the relaxation order; di = � 1
2 degGi(x)�;

y = [yi]i =
∫
b2k(x) dµ is the vector of moments of some

unknown measure µ; br(x) is the monomial basis of the
space of polynomials having degrees up to r:

br(x) = [1 x1 x2 . . . xn x2
1 x1x2 . . . x2

n . . . xr
1 . . . xr

n]
T;

vector [fi]i is a representation of f(x) in this basis: f(x) ≡∑
i(bk(x))ifi. Mk(y) and Mk−di(Gi, y) are the moment

matrix and localizing matrices derived from

Mk(y) ≡
∫

bk(x)bk(x)
T dµ,

Mk−d(G, y) ≡
∫ (

bk−d(x)bk−d(x)
T
)
⊗G(x) dµ.

For k → ∞, the minimum of the LMI relaxation ap-
proaches the minimum of the original PMI problem; in
practice, for many problems they become equal for finite,
relatively small, values of k, and the vector of moments of
PMI solution becomes a solution to the LMI relaxation.

3. ATOMIC OPTIMIZATION

The global optimization method described in section 2.2 is
quite flexible and powerful. On the other hand, it suffers
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