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Abstract: A new approach to rejection of exogenous disturbances in linear control systems via
static combined feedback is proposed. Namely, in addition to static linear state feedback, we
introduce a linear feedback from the components of exogenous disturbances whose instantaneous
values are assumed to be known. The control design is based on the technique of linear
matrix inequalities, and the proposed simple approach leads to a convex minimization problem.
Moreover, a new approach to the design of sparse combined feedback in linear control systems
is proposed; it can be interpreted as reduction of the control resource required to handling the
system.
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1. INTRODUCTION

The problem of rejection the exogenous disturbances is
one of the key problems in classical control theory; due
to diverse origins, it is studied in various sections of
control theory. There exists a lot of statements, as well as
approaches, see Boyd et al. (1994); Blanchini and Miani
(2008); Vidyasagar (1986); Hao and Wang (2007); Dahleh
and Diaz-Bobillo (1995); Abedor et al. (1996); Polyak et al.
(2014) and references therein.

Consider the linear control system

ẋ = Ax+B1u+Dw, x(0) = x0,

z = Cx+B2u,
(1)

where A ∈ Rn×n, B1 ∈ Rn×p, B2 ∈ Rl×p, D ∈ Rn×m,
C ∈ Rl×n are fixed known matrices, x(t) ∈ Rn is the state
vector, z(t) ∈ Rl is the system output, u(t) ∈ Rp is the
control input, w(t) ∈ Rm is the exogenous disturbance
satisfying the Euclidean norm constraints

w⊤(t)w(t) ≤ 1 ∀t ≥ 0. (2)

It is assumed that the pair (A,B1) is controllable.

In Nazin et al. (2007); Khlebnikov et al. (2011), the linear
static state feedback

u = Kx, K ∈ Rp×n (3)

was used for the rejection of l∞-bounded exogenous dis-
turbances for system (1), (2).

Remark 1. The presence of the control component B2u in
the output of the system (1) allows for a more general
statement of the problem where, along with the minimiza-
tion of the system output, we try to avoid large values of
the control signal.

⋆ This work was supported by the Russian Science Foundation,
project no. 16-11-10015.

Note that the only available information about distur-
bances is their boundedness. However, sometimes the in-
stantaneous values of certain components of the distur-
bances are known. For example, such situation appears at
electric motor control systems when the deviation of the
load torque is considered as an exogenous disturbance.

It is natural to exploit the additional information about
the exogenous disturbances for control design. Namely,
besides the linear static state feedback, we introduce the
linear feedback via exogenous disturbances (or, by a part
of its accessible components):

u = Kx+K1w, K1 ∈ Rp×m. (4)

As a result, we obtain the so-called combined feedback.

The following remark is due at this point. Often, exogenous
disturbances and the control input are applied to the plant
“at the same point”; in other words, in this case we have

B1 = D

for system (1). It is well-known (see, e.g., Polyak et al.
(2014)) that in such case it is possible to construct the
gain matrix (3) which guarantees the convergence of the
system trajectories to the arbitrarily small tube. However
it leads to the unconstrained growth of the gain matrix,
and, consequently, to huge values of the control input.

Besides, closed-loop system (1) embraced with the com-
bined feedback (4) with

K1 = −I,

takes the form

ẋ = (A+B1K)x, x(0) = x0.

Its trajectories asymptotically tend to zero for any stabiliz-
ing controller K, and for any exogenous disturbances w(t)
(not necessarily satisfying condition (2)); therefore, the
disturbances can be rejected completely.
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ẋ = (A+B1K)x, x(0) = x0.

Its trajectories asymptotically tend to zero for any stabiliz-
ing controller K, and for any exogenous disturbances w(t)
(not necessarily satisfying condition (2)); therefore, the
disturbances can be rejected completely.

12th IFAC International Workshop on
Adaptation and Learning in Control and Signal Processing
June 29 - July 1, 2016. Eindhoven, The Netherlands

Copyright © 2016 IFAC 1

Control of Linear Systems Subjected to
Exogenous Disturbances:

Combined Feedback

Mikhail V. Khlebnikov ∗

∗ Laboratory of Adaptive and Robust Control Systems, Institute of
Control Science, Russian Academy of Sciences, Profsoyuznaya 65,

Moscow, Russia (e-mail: khlebnik@ipu.ru).

Abstract: A new approach to rejection of exogenous disturbances in linear control systems via
static combined feedback is proposed. Namely, in addition to static linear state feedback, we
introduce a linear feedback from the components of exogenous disturbances whose instantaneous
values are assumed to be known. The control design is based on the technique of linear
matrix inequalities, and the proposed simple approach leads to a convex minimization problem.
Moreover, a new approach to the design of sparse combined feedback in linear control systems
is proposed; it can be interpreted as reduction of the control resource required to handling the
system.

Keywords: linear system, exogenous disturbances, LMI, invariant ellipsoid, combined feedback.

1. INTRODUCTION

The problem of rejection the exogenous disturbances is
one of the key problems in classical control theory; due
to diverse origins, it is studied in various sections of
control theory. There exists a lot of statements, as well as
approaches, see Boyd et al. (1994); Blanchini and Miani
(2008); Vidyasagar (1986); Hao and Wang (2007); Dahleh
and Diaz-Bobillo (1995); Abedor et al. (1996); Polyak et al.
(2014) and references therein.

Consider the linear control system
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2. THE INVARIANT ELLIPSOID APPROACH

We recall essentials of the invariant ellipsoid approach.
In the simplest statement, the goal is to describe the
reachable set R for the dynamic system given by

ẋ = Ax+Dw, x(0) = 0,

z = Cx,
(5)

where A ∈ Rn×n, D ∈ Rn×m, C ∈ Rl×n are fixed known
matrices, x(t) ∈ Rn is the state vector, z(t) ∈ Rl is the
system output, w(t) ∈ Rm is the exogenous disturbance
satisfying constraints (2). It is assumed that system (5) is
stable, the pair (A,D) is controllable, and C is a full-rank
matrix.

Since in the general case, the characterization of the
reachable set R of system (1) and the respective set for the
output variable is not doable in closed form for exogenous
disturbances (2), outer approximations are often exploited,
see Blanchini and Miani (2008). One of the popular,
simple, and transparent methods is based on ellipsoidal
approximations of reachable sets, see Schweppe (1973);
Kurzhanski and Valyi (1997). We follow the invariant
ellipsoid approach, which is based on the construction of
a (common) quadratic Lyapunov function for the closed-
loop system, see Boyd et al. (1994); Abedor et al. (1996);
Polyak et al. (2014), etc. The technique of linear matrix
inequalities is a natural and convenient tool for realization
of such an approach.

The notion of invariant ellipsoid is central to all construc-
tions in the paper.

Definition 2. The ellipsoid

Ex
.
= Ex(P ) =

{
x ∈ Rn : x⊤P−1x ≤ 1

}
, P ≻ 0, (6)

is said to be invariant for system (5), (2), if the condition
x(0) ∈ Ex implies x(t) ∈ Ex for all t ≥ 0.

The following result holds.

Theorem 3. (Boyd et al. (1994)). Ellipsoid (6) is invariant
for system (5), (2), if and only if its matrix P satisfies the
LMIs

AP + PA⊤ + αP +
1

α
DD⊤ ≼ 0, P ≻ 0, (7)

for some α > 0.

Every invariant ellipsoid contains the reachable set of
system (5) (which is the smallest possible invariant set),
leading to an outer bound for R. Therefore, it is natural to
seek for the smallest invariant ellipsoid. Among the variety
of criteria of minimality we adopt the trace criterion
because of its linearity and transparent physical meaning
(the sum of the squared semiaxis of the ellipsoid).

Usually, the goal is to characterize the magnitude of the
output rather than that of the state. In that respect, it is
seen that, associated with the invariant ellipsoid (6) is the
bounding ellipsoid for the output variable z, specified by

Ez =
{
z ∈ Rm : z⊤(CPC⊤)−1z ≤ 1

}

where P is the matrix of the state-invariant ellipsoid.
Hence, the goal is to find the bounding ellipsoid which
attains the minimum to the function

f(P ) = tr[CPC⊤].

This function is linear in P ; hence, for α fixed, the
minimization of f(P ) subject to the LMI constraints (7)
is a semidefinite program, SDP.

This approach was extended to system control design
via linear state feedback in Nazin et al. (2007) and via
linear output feedback in Polyak and Topunov (2008b),
to filtering problems, see Polyak and Topunov (2008a),
to various robust statements, see Khlebnikov (2009), etc.
A systematical exposition of the consistent technique was
given in Polyak et al. (2014).

3. STATEMENT OF THE PROBLEM AND THE
MAIN RESULT

Now we turn back to system (1) subjected to exogenous
disturbances (2), while the instantaneous values of the
components

wi(t), i ∈ I ⊆ {1, . . . ,m},
are known at any time instant t.

The goal is to find a combined feedback (4) with the indices
i /∈ I of the zero columns in the matrix K1 ∈ Rp×m, which
stabilizes the closed-loop system (1), (2) and minimizes the
trace of the bounding ellipsoid for the system output z.

Remark 4. Embracing system (1) with combined feed-
back (4), it is natural to put only the state feedback
component in the entry B2u of the system output z, see
Remark 1.

We now formulate the main result of the paper.

Theorem 5. Let �P , �Y , �K1, �H be the solution of the
minimization problem

min trH (8)

subject to the constraints(
AP + PA⊤ +B1Y + Y ⊤B⊤

1 + αP D +B1K1

D⊤ +K⊤
1 B⊤

1 −αI

)
≼ 0,

(9)(
CPC⊤ −H +B2Y C⊤ + CY ⊤B⊤

2 B2Y
Y ⊤B⊤

2 −P

)
≼ 0 (10)

with respect to the matrix variables P ∈ Rn×n, Y ∈ Rp×n,
H ∈ Rl×l, K1 ∈ Rp×m (with indices i /∈ I of the zero
columns) and the scalar parameter α > 0.

Then, the combined feedback

u = �Y �P−1x+ �K1w

stabilizes system (1), (2), and the matrix

RI = �H
defines the associated bounding ellipsoid for the closed-
loop system with x0 = 0.

Proof. Taking into account Remark 4 and using com-
bined feedback (4), the closed-loop system (1) takes the
form

ẋ = (A+B1K)x+ (D +B1K1)w, x(0) = 0,

z = (C +B2K)x.
(11)

By Theorem 3, the matrix of invariant ellipsoid of sys-
tem (11) satisfies the LMIs
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