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Abstract: Although in many static estimation problems the data are collected from repeated
experiments, the default underlying (assumption) setting in most of the system identification
tasks is that the data are generated from a single experiment. The rationale for this is that more
data can be obtained by increasing the measurement time instead of doing more experiments.
As the measurement time tends to infinity, under suitable assumptions it is possible to estimate
consistently the model parameters. In most of the real life cases, however, increasing the
measurement time is either not possible or it does not cover the whole operating range of
the system to be identified, hence data from multiple experiments need to be combined.
Furthermore, most of the real life systems are nonlinear and a large variety of nonlinear systems
can be described by a nonlinear state space model structure. In this paper, a methodology
to deal with the transients arising due to concatenating data from multiple experiments
during the identification of Polynomial nonlinear state space (PNLSS) models is described.
The methodology is validated on data generated from a laboratory experimental set-up.
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1. INTRODUCTION

There is an evident need of good system modelling tech-
niques in many branches of engineering. Mathematical
(linear or nonlinear) models are needed in various ap-
plications, for example, to understand and analyse the
system under test, to simulate or predict the behavior
of the system during the design phase or to design and
implement a controller. System identification provides us
with a variety of methods to derive accurate mathematical
descriptions of the underlying system, based on a set of
input/output measurements.

1.1 Nonlinear System Identification

The recent years have witnessed the shift from linear sys-
tem identification (Ljung (1998); Pintelon and Schoukens
(2012); Van Overschee and De Moor, 1996) to nonlinear
system identification methods, driven by the need to cap-
ture the inherent nonlinear effects of real-life systems. Non-
linear system identification constantly faces the challenge
of deciding between the flexibility of the fitted model and
its parsimony. Flexibility refers to the ability of the model
to capture complex nonlinearities, while parsimony is its
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ability to possess a low number of parameters. A general
framework for nonlinear system identification does not
exist (Giannakis and Serpedin (2001)), however, modeling
nonlinear systems is covered in different fields like statisti-
cal learning and machine learning (Hastie et al. (2009);
Rasmussen and Williams (2006); Suykens et al. (2002,
2012)), but most of these methods are typically not specif-
ically developed to deal with dynamics and often have
limited means for dealing with noise. Within the system
identification community two major approaches to non-
linear system identification can be distinguished: black-
box nonlinear system identification (Sjöberg et al. (1995),
Billings (2013)) and block-oriented system identification
(Giri and Bai (2010), Mzyk (2013)). In this paper, we focus
mainly on the black-box nonlinear system identification
methods, especially on the identification of nonlinear state
space model structures (Paduart et al. (2010)) .

1.2 Multiple Experiments

There are many situations that can lead to a series of
subrecords of equal (Markovsky and Pintelon (2015))
or unequal lengths (Schoukens et al. (2012)). A first
illustration is a long experiment where some parts in
the data have extremely poor quality due to a sensor
failure or due to very large disturbances coming from other
processes. Eliminating these bad parts results in a series
of broken subrecords of the data. In other experiments,
it might be impossible to measure for a very long time
without interruption; only a series of shorter tests can
be performed. Finally, we can consider systems that vary
slowly due to changing operational conditions, e.g., a
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varying temperature, pressure etc. In that case, a series
of subrecords that are collected under similar conditions
can be grouped. If, for one of these reasons, a set of
shorter subrecords is available, it turns out that it is
advantageous to process them all at once, considering the
data to come from one single experiment. Therefore in
this paper we concentrate on developing a methodology
to handle data from multiple experiments (as well as
transients due to concatenation of data records) within the
nonlinear system identification framework. The structure
of the paper is the following: In Section 2, first along with
the definition of a generic nonlinear state space model
structure, the structure of the PNLSS model is presented.
Next, in Section 3, an identification procedure of PNLSS
models is explained in detail. Furthermore, it is explained
how this identification method can be used to handle
transients arising due to concatenating the data from
multiple experiments. Section 4 presents the results and
finally the conclusions are stated in Section 5.

2. NONLINEAR STATE SPACE

Physical interpretation of the system under test is not
always required, for instance in control or prediction prob-
lems. In that case, the user prefers a flexible and an easy-
to-initialize black-box model. Moreover, the model should
preferably be able to describe Multiple-Input Multiple-
Output (MIMO) systems in a compact way. A good base
for such a model is a state space representation of the sys-
tem under consideration. A general nth

a order discrete-time
state space model is described by the following equations:

x(t+ 1) = f(x(t), u(t)) (1)
y(t) = g(x(t), u(t)) (2)

with u(t) ∈ Rnu the vector containing the nu inputs
at time t, and y(t) ∈ Rny the vector containing the
ny outputs. The state vector x(t) ∈ Rna represents the
memory of the dynamical system.

2.1 Polynomial Nonlinear State-Space Models

A nonlinear state space model (where f(·), g(·) are ap-
proximated by polynomial basis functions) is a natural
representation for a MIMO system. Moreover, it can han-
dle nonlinear feedback without any problem. The PNLSS
model structure (Paduart et al. (2010)) is described as:

x(t+ 1) = Ax(t) +Bu(t) + Eζ(t)

y(t) = Cx(t) +Du(t) + Fη(t) + e(t) (3)
The coefficients of the linear terms in x(t) ∈ Rna and
u(t) ∈ Rnu are given by the matrices A ∈ Rna×na and
B ∈ Rna×nu in the state equation, C ∈ Rny×na and D ∈
Rny×nu in the output equation. The vectors ζ(t) ∈ Rnζ

and η(t) ∈ Rnη contain nonlinear monomials in x(t) and
u(t) of degree two up to a chosen degree P and e(t) is the
measurement noise. The coefficients associated with these
nonlinear terms are given by the matrices E ∈ Rna×nζ and
F ∈ Rny×nη .

3. IDENTIFICATION OF PNLSS FROM
MULTIPLE EXPERIMENTS

The identification procedure for the PNLSS model in Sec-
tion 2.1 consists of three major steps. The structure of the

black-box state space model given in (3) lends itself to an
efficient, three steps identification procedure. First, initial
estimates of the A, B, C and D matrices are obtained.
In order to do so, first, a nonparametric estimate of the
system’s frequency response function (FRF) is determined
in mean square sense. Then, a parametric linear model
(linear subspace A,B,C,D matrices) is estimated from
this nonparameteric Best Linear Approximation (BLA).
Second, the subspace estimates are optimised in maximum
likelihood sense by applying a nonlinear minimisation rou-
tine. The last step consists in estimating the full nonlinear
model (also including the polynomial coefficients) by using
again a nonlinear search routine. Bounded input-bounded
output (BIBO) stability is required for this optimization
procedure. In the subsections below, these steps as well
as the framework involved in these steps are described
briefly. The whole procedure is carried out in the frequency
domain, which opens the possibility to apply user-defined
weighting functions in specific frequency bands.

3.1 Best Linear Approximation

Definition 1. The Best Linear Approximation (BLA) of a
nonlinear system is defined as the model G belonging to
the set of linear models G, such that

GBLA = argmin
G∈G

E
(
|y(t)−Gu(t)|2

)
(4)

Fig. 1. Time domain representation of the problem

3.1.1. Set Up In this section, we focus for simplicity on
(the estimation of) a nonparametric linear discrete-time
single-input-single-output (SISO) model G0(q), which is
excited with signals belonging to the Riemann equivalence
class of asymptotically normally distributed excitation
signals (Pintelon and Schoukens (2012)), see Fig. 1.

y(t) = G0(q)u0(t). (5)
with q−1 the backward shift operator (q−1x(t) = x(t−1)).
All results apply also to continuous time systems. The
exact input u0(t) is assumed to be known, while the output
is disturbed with additive noise v(t):

y(t) = y0(t) + v(t). (6)
The noise v(t) is assumed to be filtered white noise ,

v(t) = H0(q)e(t). (7)
where H0(q) is the noise model. For an infinitely long data
record t = −∞, ..., N − 1, the input-output relation is

y(t) = G0(q)u0(t) +H0(q)e(t). (8)
For a finite record length t = 0, ..., N−1, as it is in practical
applications, this equation has to be extended with the
initial conditions (transient) effects of the dynamic plant
and noise system tG , tH :

y(t) = G0(q)u0(t) +H0(q)e(t) + tG(t) + tH(t). (9)
Using the discrete Fourier transform (DFT)

X(k) =
1√
N

N−1∑
t=0

x(t)e−j2πkt/N , (10)
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