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Abstract: In this paper, we study a tracking control problem for linear time-invariant systems
with model parametric uncertainties under input and states constraints. We apply the idea of
modular design introduced in Benosman [2014], to solve this problem in the model predictive
control (MPC) framework. We propose to design an MPC with input-to-state stability (ISS)
guarantee, and complement it with an extremum seeking (ES) algorithm to iteratively learn
the model uncertainties. The obtained MPC algorithms can be classified as iterative learning

control (ILC)-MPC.
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1. INTRODUCTION

Model predictive control (MPC), e.g., Mayne et al. [2000],
is a model-based framework for optimal control of con-
strained multi-variable systems. MPC is based on the
repeated, receding horizon solution of a finite-time optimal
control problem formulated from the system dynamics,
constraints on system states, inputs, outputs, and a cost
function describing the control objective. However, the
performance of MPC based controllers inevitably depends
on the quality of the prediction model used in the optimal
control computation. In contrast, extremum seeking (ES)
control is a well known approach where the extremum of
a cost function associated with a given process perfor-
mance (under some conditions) is found without the need
for detailed modelling information, see, e.g., Ariyur and
Krstic [2003, 2002], Nesic [2009]. Several ES algorithms
(and associated stability analysis) have been proposed,
Krstic [2000], Tan et al. [2006], Nesic [2009], Ariyur and
Krstic [2003], Guay et al. [2013], and many applications
of ES have been reported Hudon et al. [2008], Zhang and
Ordoénez [2012], Benosman and Atinc [2013].

The idea that we want to theoretically analyze in this
paper, is that the performance of a model-based MPC
controller can be combined with the robustness of a model-
free ES learning algorithm for simultaneous identifica-
tion and control of linear time-invariant systems with
structural uncertainties. We refer the reader to Benosman
2014], Benosman and Atinc [2013], Atinc and Benosman
2013] where this idea of learning-based modular adaptive
control has been introduced in a more general setting of
nonlinear dynamics. We aim at proposing an alternative
approach to realize an iterative learning-based adaptive
MPC. We introduce an approach for an ES-based iterative
learning MPC that merges a model-based linear MPC
algorithm with a model-free ES algorithm to realize an
iterative learning MPC that adapts to structured model
uncertainties. Due to the iterative nature of the learning
model improvement, we first review some existing Iterative

learning control (ILC) MPC methods. Indeed, ILC method
introduced in Arimoto [1990] is a control technique which
focuses on improving tracking performance of processes
that repeatedly execute the same operation over time. It
is of particular importance in robotics and in chemical
process control of batch processes. We refer the reader to
e.g., Wang et al. [2009], and Ahn et al. [2007] for more
details on ILC and its applications. At the intersection
of learning based control and constrained control is the
ILC-MPC concept. For instance, ILC-MPC for chemical
batch processes are studied in Wang et al. [2008], Cueli
and Bordons [2008], and Shi et al. [2007]. As noted in
Cueli and Bordons [2008] one of the shortcomings of the
current literature is a rigorous justification of feasibility,
and Lyapunov-based stability analysis for ILC-MPC . For
example, in Wang et al. [2008] the goal is to reduce the
error between the reference and the output over multiple
trials while satisfying only input constraints. However, the
reference signals is arbitrary and the MPC scheme for
tracking such signals is not rigorously justified. Further-
more, the MPC problem does not have any stabilizing con-
ditions (terminal cost or terminal constraint set). In Cueli
and Bordons [2008], an ILC-MPC scheme for a general
class of nonlinear systems with disturbances is proposed.
The proof is presented only for MPC without constraints.
In Shi et al. [2007], the ILC update law is designed using
MPC. State constraints are not considered in Shi et al.
[2007]. In Lee et al. [1999] a batch MPC (BMPC) is pro-
posed, which integrates conventional MPC scheme with an
iterative learning scheme. A simplified static input-output
map is considered in the paper as opposed to a dynamical
system. Finally, the work of Aswani et al. [2013, 2012a,b],
studies similar control objectives as the one targeted in this
paper using a learning-based MPC approach. The main
differences are in the control/learning design methodology
and the proof techniques. In summary, we think that
there is a need for more rigorous theoretical justification
attempted in this paper. Furthermore, to the best of our
knowledge, the literature on ILC-MPC schemes do not
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consider state constraints, do not treat robust feasibility
issues in the MPC tracking problem, rigorous justification
of reference tracking proofs for the MPC is not present
in the literature and stability proofs for the combination
of the ILC and MPC schemes are not established in a
systematic manner.

The main contribution of this work is to present a rigorous
proof of an ILC-MPC scheme using existing Lyapunov
function based stability analysis established in Limon et al.
[2010] and extremum seeking algorithms in Khong et al.
[2015b], to justify the ILC-MPC method in Benosman
et al. [2014], where an ES-based modular approach to
design ILC-MPC schemes for a class of constrained linear
systems is proposed.

The rest of the paper is organized as follows. Section
2 contains some useful notations and definitions. The
MPC control problem formulation is presented in Section
3. Section 4 is dedicated to a rigorous analysis of the
proposed ES-based ILC-MPC. Finally, simulation results
and concluding comments are presented in Section 5 and
Section 6, respectively.

2. NOTATION AND BASIC DEFINITIONS

Throughout this paper, R denotes the set of real numbers
and Z denotes the set of integers. State constraints and
input constraints are represented by X C R™ and & C R™,
respectively. B refers to a closed unit ball in R™. The
optimization horizon for MPC is denoted by N € Z>;.
The feasible region for the MPC optimization problem is
denoted by Xn. A continuous function a : R>g — Rx>¢
with a(0) = 0 belongs to class K if it is increasing and
bounded. A function 3 belongs to class K if it belongs
to class K and is unbounded. A function §(s,t) € KL if
B(-,t) € K and lim;_ B(s,t) = 0. Given two sets A and
B, such that A ¢ R", B C R", the Minkowski sum is
defined as A® B := {a+bla € A,b € B}. The Pontryagin
set difference is defined as A © B := {z|lx @ B € A}.
Given a matrix M € R™*™, the set M A C R™, is defined
as MA £ {Ma : a € A}. A positive definite matrix
is denoted by P > 0. The standard Euclidean norm is
represented as |z| for x € R™, |z|p := V2T Pz for a positive
definite matrix P, |z|4 := inf,c 4 |x — y| for a closed set
A C R™ and || A|| represents an appropriate matrix norm
where A is a matrix. B represents the closed unit ball in
the Euclidean space. Also, a matrix M € R™*™ is said to
be Schur iff all its eigenvalues are inside the unitary disk.

3. PROBLEM FORMULATION

We consider linear systems of the form

o(k+1)=(A+ AA)z(k) + (B+ ABuk), (1)
y(k) = Cx(k) + Du(k), 2)

where AA and AB represent the uncertainty in the system
model. We will assume that the uncertainties are bounded
as follows:

Assumption 1. The uncertainties ||AA| < €4 and ||[AB|| <
lp for some £4,¢p > 0.

Next, we impose some assumptions on the reference signal
.

Assumption 2. The reference signal r : [0,7] — R is a
piecewise constant trajectory for some T > 0.

Due to the iterative control design methodology, the initial
condition x( for the system is fixed over multiple trials
and at the end of each trial the state is reset to the initial
condition. The goal is design the sequence of control inputs
{u(k)} =+ using MPC to track the reference trajectory r
while satisfying the state and input constraints, and the
update laws for parameter estimation of the uncertainties
AA,AB after each trial or iteration. We also implicitly
assume that the reference signal r is slowly varying and the
time T is sufficiently large to allow learning from previous
trials. Next, we will explain in detail the optimization
problem associated with the MPC based controller. The
results stated here are from Limon et al. [2010]. We exploit
the analysis results in Limon et al. [2010] to establish that
the closed-loop system has an ISS property with respect
to the parameter estimation error. We first observe that
since the reference trajectory r is a piecewise constant
trajectory, the problem of tracking the signal r is simplified
to the problem of tracking multiple constant and feasible
set points during successive time intervals in [0,77] in the
presence of uncertainties.

Since the value of AA and AB are not known a priori,
the MPC uses a model of the plant based on the current
estimate AA and AB.

We will now formulate the MPC problem with a given
estimate of the uncertainty for a particular iteration of

the learning process. We will rewrite the system dynamics
as

z(k+1) = f(z,u) + g(z,u,A) = F(z,u,A),  (3)
where f(z,u) = Az 4+ Bu and g(z,u,A) = AAx + ABu.

Assumption 3. The state constraint set X C R" and
control constraint set &4 C R™ are compact, convex
polyhedral sets.

The MPC model is generated using an estimate AA, AB
and is expressed as

w(k+1) = flz,u) + g(x,u,A) = F(z,u,A). (4)

We can now rewrite the actual model as

z(k+1) = f(z,u) + g(z,u, A) + (AA — AA)z + (AB — AB)u.(5)

This system can now be compared to the model in Limon
et al. [2010]. So we have

z(k+1) = F(z(k),u(k),A) +w(k), (6)
where

w(k) = (AA — AA)z(k) + (AB — AB)u(k),  (7)
and z(k) € X, u(k) € U. The following assumption will be
justified in the next section.

Assumption 4. The estimates of the uncertain parameters

are bounded with ||AA| < ¢4 and |AB| < ¢p for all
iterations of the extremum seeking algorithm.

We now impose certain conditions on the disturbance w(k)
and system matrices in accordance with [Limon et al.,
2010, Assumption 1].

Assumption 5. The pair (A—i—AA, B—i—AB) is controllable
for every realization of AA and AB.

We will denote the actual model using (z, u) and the MPC
model through (Z, a). Hence we have
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