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Abstract: The main motivation for this paper is to improve an acoustic leak detection system
for pipelines by using blind source separation. In this setup hundreds of microphones are used
to continuously monitor a pipeline. We propose to use a source separation scheme to eliminate
overlapping sounds in the measured signals making is easier to detect and locate acoustic events
in the measured data. To separate the sources, a large scale system identification problem
results. In this paper we present one way that the identification problem can be made more
computationally efficient. First, the blind source separation problem is parameterized as a
channel estimation problem. Due to the presence of echoes, the channel impulse responses are
very long, but are sparse in the sense that they are zero for a significant portion of the response.
Then this sparsity is exploited for reducing the computational complexity of the identification
problem. Our method is tested on a small scale test pipeline.
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1. INTRODUCTION

An acoustic measurement is a superposition of multiple
acoustic sources that reach a microphone via multiple
paths (as illustrated in Fig. 1la). In various applications
it is desired to reconstruct the original sources given
only the measured signals. This is referred to as Blind
Source Separation (BSS) and is a well studied topic in
the acoustics literature (see Weinstein et al. (1993); Hua
et al. (2003); Buchner et al. (2005); Aichner et al. (2006,
2008); Huang et al. (2006a) for instance).
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Fig. 1. (a) Hlustration of sound reflecting in a room. The
circle denotes the sound source, the square denotes
a microphone, and arrows denote the acoustic paths
from source to sensor. (b) Example of a channel
impulse response with an echo.

In this paper we propose a modification to the typical BSS
algorithms in order to obtain a more accurate estimate
of the sources and decrease the computation time of the
algorithm. We apply the proposed BSS algorithm to a leak
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detection problem in pipelines. Although there currently
exist many adaptive BSS algorithms, implementation of
real-time BSS for large scale systems with many measured
signals remains a challenge (Huang et al., 2006a,b). In the
leak detection setup (presented in detail later in this sec-
tion) acoustic sensors are spaced evenly along a pipeline,
thus for long pipelines there can be a large number of
measured signals (possibly hundreds) which is beyond the
capacity of current BSS algorithms. We are looking for
ways to increase the processing speed of BSS algorithms.
A key observation is that the channel impulse responses in
an acoustic system are relatively long due to the presence
of echoes. In a pipeline, an echo can be detected 2 or more
seconds after the initial sound which is several orders of
magnitude longer than the initial response of the system
a few milliseconds long. The result is a channel impulse
response that is very long, but is zero for most of the
time (as shown in Fig. 1b). The channel impulse response
is block-sparse, meaning that many of the terms in the
impulse response are zero, and the non-zero terms appear
clustered together in blocks.

In current literature, BSS algorithms do not directly es-
timate the channel impulse responses, and therefore the
sparsity of the channel impulse responses cannot be ex-
ploited (Aichner et al., 2008; Huang et al., 2006a). In the
first part of this paper we investigate the question: how can
the sparsity of the impulse response of an acoustic channel
be used in order to obtain faster, more accurate BSS
algorithms? There are certainly other ways of increasing
the computational speed of BSS algorithms such as using
basis functions, or using the interconnection structure of
the measurements in relation to the sources, however we
will leave these items as future work.

2405-8963 © 2016, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Peer review under responsibility of International Federation of Automatic Control.

10.1016/j.ifacol.2016.07.956



230 Arne Dankers et al. / IFAC-PapersOnLine 49-13 (2016) 229-234

In the system identification literature and in the chan-
nel estimation literature sparse estimation techniques
are widely studied. Some examples include Proportionate
Least Squares Estimation (Helwani, 2015; Paleologu et al.,
2010), LASSO (Tibshirani, 1994; Rojas et al., 2013), and
Compressed Sensing (Eldar et al., 2010; Sanandaji et al.,
2011). In this paper, we formulate the BSS problem in
terms of a channel estimation problem, thereby enabling
the potential for using sparse estimation techniques. Then
we apply the idea of compressed sensing where only the
non-zero parameters are estimated, resulting in a faster
and more accurate algorithm since far fewer parameters
are estimated. In the next section we will explain how BSS
can be used for aiding in leak detection in pipelines.

1.1 Leak detection and localization in pipelines using BSS

Leak detection and localization are relevant issues in
today’s pipeline industry. Currently in the Canadian
province of Alberta there are over 400 000km of oil and
gas pipelines and 550 leaks were reported in 2012 (Alberta
Energy Regulator, 2013). Monitoring pipelines for leaks is
essential for mitigating environmental, health, safety and
social risks. Challenges when developing a leak detection
system include: obtaining real-time alerts for leaks, achiev-
ing the required sensitivity to detect small leaks, achieving
accurate estimates of the location of a leak, avoiding false
alarms, and developing a cost effective method. There exist
a wide variety of methods of leak detection that have been
implemented (see Murvay and Silea (2012) and references
therein) including methods based on acoustics, pressure or
hydrocarbon presence in soil.

The leak detection approach that we are investigating is
an acoustic data-driven approach because this approach
offers continuous monitoring, is adaptive and uses limited
prior knowledge. In addition the deployment of acoustic
sensors is more economical than flow rate sensors. The
data is collected using acoustic sensors placed along the
pipeline as shown in Fig. 2. Acoustic leak detection is an
active area of research (see Fuchs and Riehle (1991); Gao
et al. (2009); Brennan et al. (2007); Yang et al. (2008);
Meng et al. (2012); Qingqing et al. (2013); Wei et al. (2013)
for instance). Sources of sound around a pipeline include:
sound generated by flow inside the pipe, compressors,
generators, rain, wind, rivers, animals, traffic, etc. and
leaks in the pipeline. The majority of acoustic leak de-
tection and localization methods are based on estimating
the time delay between two measured signals and inferring
the location of the leak using the estimated delay and the
speed of sound in the fluid of the pipeline Gao et al. (2009);
Brennan et al. (2007); Meng et al. (2012). The time delay
is estimated using cross-correlation or a variant thereof.
These methods are not robust to other noises occurring
around the pipe, sound propagating through pipeline walls
and surrounding soil, and echoes/reflections of the sound.
We propose a leak detection and localization method based
on acoustic BSS. There are two main features that distin-
guish measured signals and source signals: (1) whereas a
sound near a pipeline will be present in many of the mea-
sured signals, the sound will only be present in one source
signal and (2) in the measured signal a reflected sound can
appear as a new sound, but in a source signal there are no
reflections present. Because of these features determining
the presence and location of acoustic events is easier using
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Fig. 2. Diagram of a pipeline and data acquisition setup
investigated in this paper. Black squares denote mi-
crophones. Acoustic sources are denoted using circles.

source signals (rather than measured signals). Thus we
propose to continuously estimate the source signals along
a pipeline (using a BSS scheme) and monitor them for
changes. Using this approach acoustic events occurring
along a pipeline can be detected and localized. However,
the event is not categorized. To determine if a detected
event is a leak, the event must be further analyzed. Event
categorization will not be discussed in this paper.

The pipeline and sensor set up of Fig. 2 can be described
by the following assumptions.

Assumption 1. The acoustics satisfy the conditions:

(a) A source i consists of a summation of all sounds
originating in channel i.

(b) The acoustic sources occur in, on or near the pipeline.

(¢) The sources can be considered stationary for time
intervals of a minute or less.

(d) Sound travels through various media including the
fluid in the pipe, the pipe wall, and material surround-
ing the pipeline.

(e) Sound is reflected by valves, imperfections, etc. in the
pipe, and interfaces in material surrounding the pipe.

(f) Leaks are not always present, but when they occur
they resemble a broadband stochastic process.

(g) The sensors are not be tuned very often (frequency
response of the sensors may change).

In the remainder of this paper we present a BSS algorithm
that can handle the situation represented by these assump-
tions, then we apply the method to data collected from a
simple pipeline test setup.

2. BLIND SOURCE SEPARATION

First we present the BSS framework (for more details see
Makino et al. (2007); Huang et al. (2006a); Aichner et al.
(2008)). Then we choose a specific algorithm tailored to
the conditions of Assumption 1. Assume that there are
the same number of sources as measurements (Assumption
1la), then the measured signals wy, ..., wy, can be assumed
to be generated by the data generating system:

w (1) HYi(q) - HYL(@)] [er®)

wi(t) Hpy(q) - Hip(a)] Lec(®)
where H}; are discrete time transfer functions, ¢~" is the
backward shift operator (i.e. ¢ lu(t) = u(t — 1)), and
€1, ..., er, are the (unknown) sources. The fundamental,
enabling assumption that underlies any BSS algorithm

is that the sources ey, ..., e, are mutually independent
(Huang et al., 2006a). Equation (1) can be expressed as:

w(t) = H'(g)e(t)



Download English Version:

https://daneshyari.com/en/article/708805

Download Persian Version:

https://daneshyari.com/article/708805

Daneshyari.com


https://daneshyari.com/en/article/708805
https://daneshyari.com/article/708805
https://daneshyari.com

