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Abstract: We consider the two-armed bandit problem as applied to data processing provided
that there are two alternative processing methods with different a priori unknown efficiencies.
One should determine more efficient method and ensure its preferable application. Normal two-
armed bandit is a generalization which allows to process data in parallel and almost without
loss of the control performance, i.e. without increasing of the minimax risk. However, it requires
that methods must have close efficiencies. Below we propose the adaptive modification of the
algorithm which works properly with methods which efficiencies are not obligatory close.
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1. INTRODUCTION

We consider the two-armed bandit problem (see, e.g. Berry
and Fristedt (1985), Presman and Sonin (1990)) which is
also well-known as the problem of expedient behavior in a
random environment (see, e.g. Tsetlin (1973), Varshavsky
(1973)) and the problem of adaptive control (see, e.g.
Nazin and Poznyak (1986), Sragovich (2006)) in the
following setting. Let ξn, n = 1, . . . , N be a controlled
random process which values are interpreted as incomes,
depend only on a currently chosen actions yn (yn ∈ {1, 2})
and are normally distributed with probability densities

f(x|m�) = (2π)−1/2 exp
{
−(x − m�)2/2

}

if yn = � (� = 1, 2). So, this is Normal (or Gaussian) two-
armed bandit. It can be described by a vector parameter
θ = (m1,m2). Control strategy σ at a point of time n
assigns a random choice of the action yn depending on
the current history of the process, i.e. replies xn−1 =
x1, . . . , xn−1 to applied actions yn−1 = y1, . . . , yn−1:

Pr(yn = �|yn−1, xn−1) = σ�(yn−1, xn−1),
� = 1, 2. The set of strategies is denoted by Σ.

The goal is to maximize (in some sense) the total expected
income. So, if parameter θ is known then the optimal
strategy should always choose the action corresponding
to the larger value of m1, m2. The total expected income
would thus be equal to N(m1 ∨ m2) where ∨ stands for
maximum. If parameter is unknown then the loss function

LN (σ, θ) = N(m1 ∨ m2) − Eσ,θ

(
N∑

n=1

ξn

)

describes expected losses of total income with respect to
its maximal possible value due to incomplete information.
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Here Eσ,θ denotes the mathematical expectation calcu-
lated with respect to the measure generated by strategy σ
and parameter θ. The set of parameters is assumed to be
the following

Θ = {θ : |m1 − m2| ≤ 2C},
where 0 < C < ∞. Restriction C < ∞ ensures the
boundedness of the loss function on Θ.

According to the minimax approach the maximal value of
the loss function on the set of parameters Θ should be
minimized on the set of strategies Σ. The value

RM
N (Θ) = inf

Σ
sup
Θ

LN (σ, θ) (1)

is called the minimax risk and corresponding strategy σM

(if it exists) is called the minimax strategy. Note that if
strategy σM is applied then inequality

LN (σM , θ) ≤ RM
N (Θ)

holds for all θ ∈ Θ and this means robustness of the
control.

The minimax approach to the problem was proposed
by H. Robbins in Robbins (1952). This article caused
a significant interest to considered problem. The classic
object of the most of arisen articles was Bernoulli two-
armed bandit which can be described by distribution

Pr(ξn = 1|yn = �) = p�, Pr(ξn = 0|yn = �) = q�,

where p� + q� = 1, � = 1, 2. Such two-armed bandit is
described by a parameter θ = (p1, p2) with the set of
possible values Θ = {θ : 0 ≤ p� ≤ 1; � = 1, 2}. It was shown
in Fabius and van Zwet (1970) that explicit determination
of the minimax strategy and minimax risk is practically
impossible already for N > 4. However, the asymptotic
minimax theorem was proved by W. Vogel in Vogel (1960)
by indirect techniques. It states that minimax risk has the
order N1/2 as N → ∞. In more details it is presented in
section 2.
Remark 1. There are some different approaches to robust
control in the two-armed and multi-armed bandit prob-
lems, see, e.g. Nazin and Poznyak (1986); Lugosi and
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Cesa-Bianchi (2006); Juditsky et al (2008); Gasnikov et al
(2015). In these articles stochastic approximation method,
mirror descent algorithm and some other techniques are
used for the control. Instead of minimax risk, the authors
often consider the equivalent attitude called the guaran-
teed rate of convergency. The order of the minimax risk
for these algorithms is N1/2 or close to N1/2.

Let’s explain the choice of the normal distribution of
incomes. We consider the problem as applied to control of
processing a large amount of data in a comparatively small
number of stages by grouping them and then processing in
parallel. Let T = NM data be given that can be processed
using either of the two alternative methods. Processing
can be successful (ζt = 1) or unsuccessful (ζt = 0).
The probabilities of successful and unsuccessful processing
depend only on the selected methods (actions), that is,
Pr(ζt = 1|yt = �) = p� and Pr(ζt = 0|yt = �) = q�,
� = 1, 2. Let p1 and p2 be known to be close to p
(0 < p < 1). We partition the data into N packets of M
data in each packet and use the same method for parallel
data processing in the same packet. For the control, we use
the values of the process ξn = (DM)−1/2

∑nM
t=(n−1)M+1 ζt,

n = 1, . . . , N , where D = p(1 − p). According to the
central limit theorem, distributions of ξn, n = 1, . . . , N
are close to normal, and their variances are close to unity
as in considered setting.

Certainly, there is a question of losses in the control
performance as the result of such aggregation. It was
shown in Kolnogorov (2012) that N−1/2RM

N (ΘN ) remains
almost unchanged already for N ≥ 30. Therefore, say
30,000 items of data can be processed in 30 steps by
packets of 1,000 data with almost the same maximal losses
as if the data were processed optimally one-by-one.
Remark 2. Parallel control for the two-armed bandit prob-
lem was first suggested for the problem of treating a large
group of patients by either of the two alternative drugs
with different unknown efficiencies. Clearly, the doctor
cannot treat the patients sequentially one by one. Say, if
the result of the treatment will be manifest in a week and
there is a thousand of patients, then one-by-one treatment
would take almost twenty years. Therefore, it was proposed
to give both drugs to sufficiently large groups of patients,
and then the more effective one to give to the rest of them.
As the result, the entire treatment will take two weeks. The
discussion and bibliography of the problem can be found,
for example, in Lai et al (1980)

Another well-known approach to the problem is a Bayesian
one. Denote by λ a prior distribution density of the
parameter θ on the set Θ. The value

RB
N (λ) = inf

Σ

∫

Θ

LN (σ, θ)λ(θ)dθ (2)

is called the Bayesian risk and corresponding strategy σB

is called the Bayesian strategy. Bayesian approach is very
popular because it allows to write recursive equation for
determination of both Bayesian strategy and Bayesian
risk by a dynamic programming technique. An adaptive
nature of Bayesian formalism was recognized by many
researchers. For example, Berry and Fristedt write in
Berry and Fristedt (1985): “It is not that researchers in
bandit problems tend to Bayesians; rather Bayes’s theorem

provides a convenient mathematical formalism that allows
for adaptive learning and so is an ideal tool in sequential
decision problems”.

Both minimax and Bayesian approaches are integrated by
the main theorem of the theory of games. According to
this theorem the minimax risk (1) is equal to the Bayesian
risk (2) calculated over the worst-case prior distribution
corresponding to the maximum of the Bayesian risk, i.e.

RM
N (Θ) = RB

N (λ0) = sup
λ

RB
N (λ). (3)

And the minimax strategy is equal to corresponding
Bayesian strategy as well.

Below we use the main theorem of the theory of games for
finding minimax risk and minimax strategy. We propose a
recursive equation which allows to determine Bayesian risk
and Bayesian strategy for the parallel control of packets
of data. However, this method works well only for close
mathematical expectations m1, m2, for which expected
losses have the order N1/2. For distant expectations, such
that maximal value of m1, m2 can be quickly detected,
expected losses have the order log(N) and another strategy
should be used for the control. For expectations, which are
not obligatory close, we propose adaptive modification of
the strategy which checks the closeness of m1, m2 at the
initial stage of control and then applies the proper strategy
at the final stage.

The structure of the paper is the following. In section 2 we
discuss the paradoxical situation with maximal expected
losses for close and distant expectations m1, m2. Namely,
it may be surprisingly that maximal expected losses are
attained for close expectations where no control at all
seems to be necessary. A solution to the paradox is
grouping of data. In section 3 we describe the approach
based on the main theorem of the theory of games.
This approach allows to determine minimax strategy and
minimax risk for the case of close expectations. In section 4
we propose an adaptive algorithm which works properly
for all expectations by detecting close and distant those
ones at the initial stage of the control. Section 5 contains
conclusion.

2. MAXIMAL EXPECTED LOSSES

2.1 An Asymptotic Minimax Theorem

Maximal expected losses are described by the asymptotic
minimax theorem which was proved in Vogel (1960).
Theorem 1. The following estimates hold as N → ∞ for
Bernoulli two-armed bandit:

0.612 ≤ (DN)−1/2RM
N (Θ) ≤ 0.752 (4)

with D = 0.25 being the maximal variance of one-step
income. The lower estimate, presented here, was obtained
in Bather (1983). The upper estimate was obtained
in Vogel (1960) for the following strategy.

Thresholding strategy. Use actions turn-by-turn until
the absolute difference of total incomes for their applica-
tions exceeds the value of the threshold α(DN)1/2 or the
control time expires. If the threshold has been achieved and
the control time has not expired then at the rest of the
control horizon use only the action corresponding to the
larger value of total initial income.
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