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Abstract: We consider Normal two-armed bandit problem with a priori known variances
and unknown mathematical expectations of incomes in robust (minimax) setting. This setup
naturally arises in group control of data processing. We show that one can solve the problem
using the main theorem of the theory of games, i.e. determine minimax strategy and minimax
risk as Bayesian corresponding to the worst-case prior distribution. We obtain recursive invariant
Bellman-type equation for calculation appropriate Bayesian risk and Bayesian strategy. The
requirement of a priori known variances of incomes may be omitted because they may be

estimated at the initial stage of control.
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1. INTRODUCTION

We consider the two-armed bandit problem (see, e.g. Berry
and Fristedt (1985), Presman and Sonin (1990)) which is
also well-known as the problem of expedient behavior in a
random environment (see, e.g. Tsetlin (1973), Varshavsky
(1973)) and the problem of adaptive choice of alternatives
(see, e.g. Sragovich (2006), Nazin and Poznyak (1986))
in the following setting. Let &,, n = 1,...,N be a
controlled random process which values are interpreted
as incomes, depend only on currently chosen actions .,
and are normally distributed with probability densities
fo,(x|mg) if y, =€ (£ =1,2) where

foalm) = (27D) "2 exp {~(w — m)?/(2D)}

We assume that D, D5 are a priori known variances and
mq, mg are a priori unknown mathematical expectations.
Such two-armed bandit can be described by a vector
parameter 8 = (mq,ms). The goal is to maximize (in
some sense) the total expected income. Control strategy
o at the point of time n = n; + ns is a function of the
current statistics (X1, n1, Xo, no), where ny, ny are current
total numbers of both actions’ applications, Xy, X5 are
corresponding total incomes. Thus

oo(X1,n1, X2,n2) = Pr(y, = £|X1,n1, X2,n2),
¢ =1,2. The set of strategies is denoted by X.
If parameter 0 is known then the optimal strategy should
always apply the action corresponding to the larger value

of mq, ms. The total expected income would thus be equal
to N(myVmsg). If parameter is unknown then the function

N
Ly(0,0) = N(miVma)—Eyg (Z £n> (1)
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describes expected losses of total income due to the in-
complete information. Here E, y denotes the mathematical
expectation calculated with respect to the measure gener-
ated by strategy o and parameter 6. The set of parameters
is assumed to be the following

@: {9:|m1 —TTLQ‘ SQC},

where 0 < C < o0. Restriction C' < oo ensures the
boundedness of the loss function on ©.

According to the minimax approach the maximal total
expected losses on the set of parameters © should be
minimized on the set of strategies 3. The value

RY (©) = inf sup Ly (4,60) (2)
]

is called the minimax risk and corresponding strategy is
called the minimax strategy. The minimax approach to
the problem was proposed in Robbins (1952). This article
caused a significant interest to considered problem. The
classic object of the most of arisen articles was Bernoulli
two-armed bandit which can be described by distribution
Pr(§, = lyn =£) =pr, Pr(&n =0lyn =4) =1 —py,
£ =1,2. Such bandit is described by parameter § = (p1, p2)
with the set of values © = {0 : 0 < p, < 1;¢ = 1,2}. It
was shown in Fabius and van Zwet (1970) that explicit
determination of the minimax strategy and minimax risk
is practically impossible already for NV > 4. However, the
asymptotic minimax theorem was proved in Vogel (1960)
which states that minimax risk has the order N2 as
N — oo and provides the estimates of the factor. This
theorem holds true for the Normal two-armed bandit as
well.

Remark 1. There are some different approaches to robust
control in the two-armed and multi-armed bandit prob-
lems, see, e.g. Nazin and Poznyak (1986); Lugosi and
Cesa-Bianchi (2006); Juditsky et al (2008); Gasnikov et al
(2015). In these articles stochastic approximation method
and mirror descent algorithm are used for the control. The
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order of the minimax risk for these algorithms is N'/2 or
close to N1/2.

Let’s explain the choice of the normal distribution of
incomes. We consider the problem as applied to group
control of processing a large amount of data. Let T = NM
data be given that can be processed using either of the
two alternative methods. The result of processing of the
t-th item of data is (;. For example, processing may be
successful (¢; = 1) or unsuccessful (¢; = 0). Or {¢;} may
be equal to durations of processing; in this case the goal
is to minimize the total expected duration. Distributions
of {¢;} depend only on the selected methods (actions). We
partition the data into N packets of M data in each packet
and use the same method for data processing in the same
packet. For the control, we use the values of the process
&= Z7 i G m = 1,..., N with Z being
some normalizing factor. According to the central limit
theorem, distributions of &,, n = 1,..., N are close to
normal as in considered setting. If {{;} count successfully
processed data then the data in the same packet may
be processed in parallel. And if {(;} are durations of
processing then the same method may be applied to
successively incoming data of the packet (the duration of
parallel data processing is equal to the longest duration
but not to their sum).

It is important that parallel control almost does not
increase the value of the minimax risk if the number of
packets is large enough (see, Kolnogorov (2012, 2014)).
In more details it is discussed in section 2.

Remark 2. Note that parallel control for the two-armed
and multi-armed bandit problems was first suggested for
the problem of treating a large group of patients by either
of the two drugs with different unknown efficiencies. The
discussion and bibliography of the problem can be found,
for example, in Lai et al (1980).

Another well-known approach to the problem is a Bayesian
one. Denote by A a prior distribution density of the
parameter on the set ©. The value

RE() = inf / L (0, O)A(0)d0 3)
e

is called the Bayesian risk and corresponding strategy is
called the Bayesian strategy. Bayesian approach is very
popular because it allows to write recursive Bellman-type
equation for determination of both Bayesian strategy and
Bayesian risk by a dynamic programming technique. On
the other hand, it was often criticized (see, e.g. Presman
and Sonin (1990), Berry and Fristedt (1985)) for the lack
of clear criteria how to choose an appropriate prior distri-
bution. Minimax and Bayesian approaches are integrated
by the main theorem of the theory of games. According to
this theorem the minimax risk (2) is equal to the Bayesian
risk (3) calculated over the worst-case prior distribution
corresponding to the maximum of the Bayesian risk. And
the minimax strategy is equal to corresponding Bayesian
strategy as well.

Determination of the minimax strategy and minimax risk
as Bayesian ones corresponding to the worst-case prior
distribution is considered below. The structure of the
paper is the following. In section 2 we explain the choice

of normal distributions of incomes and show that the
requirement of a priori known variances may be omitted.
In section 3 we specify asymptotically the worst-case prior
distribution. In section 4 we provide recursive equations for
determination of the Bayesian strategy, Bayesian risk and
expected losses over this prior distribution. In section 5
numerical results are presented.

2. MOTIVATION

In this section we discuss how normal distributions of
incomes with equal or different variances may occur in
considered problem. We also show that the requirement of
a priori known variances may be omitted.

2.1 Parallel Processing of Data. Close and Distant

FExpectations

Let’s recall parallel processing considered in section 1. Of
course, it is more convenient to control the aggregated
process {&,} than the original process {(;}. However, the
following question naturally arises. How much are the
losses of the control quality due to such aggregation?
The answer to this question depends on how close are
mathematical expectations my, ms.

First, let’s make the following remark. The maximal ex-
pected losses in the two-armed bandit problem have the
order N'/2 and are attained for close expectations |m; —
my| < ¢N~Y2 with ¢ > 0 large enough. For distant
expectations |m; — mg| > § > 0, the maximal expected
losses have the order log(N). These estimates follow from
the results of Vogel (1960) and Lai et al (1980).

Let’s give a short explanation of this result. If |m; —
ma| < eN~1/2 then probability of the error to determine
the largest value of mi, mo always is not less than some
pe > a > 0. Therefore, maximal total expected losses
are not less than cN_1/2peN > caNY2. For distant
expectations |mj —ms| > 0 > 0 the largest value of my, mo
may be confidently determined on the time horizon of the
order log(N). This specifies the order of expected losses in
this case.

Second, in case of close expectations grouping of data as it
is described in section 1 almost does not affect the maximal
expected losses if the number of groups is large enough,
e.g. if the number of groups is 30 or larger. Therefore,
say 30,000 items of data may be processed in 30 steps
by packets of 1,000 data with almost the same maximal
losses as if the data were processed optimally one-by-one.
In case of distant expectations another strategies should
be used. In more details it is discussed in Kolnogorov
(2016) where the adaptive strategy is proposed which at
initial comparatively short stage checks the closeness of
expectations and applies the appropriate strategy at the
final stage of control.

Remark 3. In section 4 we present the invariant Bellman-
type recursive equation for determination of the Bayesian
risk and Bayesian strategy. Since the maximal expected
losses are attained for close expectations, the invariant
recursive equation is valid in the domain of close expecta-
tions as well.
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