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Abstract: We study in this paper the problem of adaptive trajectory tracking control for a
class of nonlinear systems with parametric uncertainties. We propose to use a modular adaptive
approach, where we first design a robust nonlinear state feedback which renders the closed
loop input-to-state stable (ISS). The input is considered to be the estimation error of the
uncertain parameters, and the state is considered to be the closed-loop output tracking error.
We augment this robust ISS controller with a model-free learning algorithm to estimate the
model uncertainties. We implement this method with a Bayesian optimization-based method
called Gaussian Process Upper Confidence Bound (GP-UCB). The combination of the ISS
feedback and the learning algorithms gives a learning-based modular indirect adaptive controller.
We test the efficiency of this approach on a two-link robot manipulator example, under noisy

measurements conditions.
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1. INTRODUCTION

Many adaptive methods have been proposed over the years
for linear and nonlinear systems, e.g., Krstic et al. [1995].
In this work we focus on a specific type of adaptive control,
namely, the indirect modular approach to adaptive nonlin-
ear control, e.g., Krstic et al. [1995], Wang et al. [2006],
Benosman and Atinc [2013], Atinc and Benosman [2013],
Benosman [2014b,al, Xia and Benosman [2015], Lavretsky
[2009], Haghi and Ariyur [2011]. In the direct approach,
first a controller is designed by assuming that all the
parameters are known (certainly equivalence principle),
and then an identifier is used to estimate the unknown
parameters online. The identifier might be independent
of the designed controller, in which case the approach
is called ‘modular’. A modular approach has been pro-
posed in Wang et al. [2006] for adaptive neural control
of pure-feedback nonlinear systems, where the input-to-
state stability (ISS) modularity of the controller-estimator
is achieved and the closed-loop stability is guaranteed by
the small-gain theorem, e.g., Sontag [1989].

In this work, we present a modular adaptive design which
combines model-free learning methods and robust model-
based nonlinear control to propose a learning-based modu-
lar indirect adaptive controller. Here, a model-free learning
algorithm is used to estimate in closed-loop the uncertain
parameters of the model. The main difference with the
existing model-based indirect adaptive control methods, is
the fact that we do not use the model to design the parame-
ters estimation filters. Indeed, model-based indirect adap-
tive controllers are based on parameters’ estimators de-
signed using the model of the system, e.g., the X-swapping
methods presented in Krstic et al. [1995]. Here, because we
do not use the system dynamics to design the estimation
filters we can deal with a more general class of uncertain-
ties, e.g., nonlinear uncertainties can be estimated with
the proposed approach, see Atinc and Benosman [2013] for

some preliminary results. Furthermore, with the proposed
approach we can estimate a vector of linearly dependent
uncertainties, a case which cannot be solved using model-
based filters, e.g., in Benosman and Atinc [2015] it is shown
that the X-swapping model-based method fails to estimate
a vector of linearly dependent parameters.

In this work, we implement the proposed approach with
a Bayesian optimization-based method called GP-UCB.
The latter solves the exploration-exploitation problem in
the continuous armed bandit problem, which is a non-
associative reinforcement learning (RL) setting.

We want to underline here that compared to ‘pure’ model-
free controllers, e.g., pure RL algorithms, the proposed
control has a different goal. The available model-free con-
trollers are meant for output or state regulation. In the
contrary, here we propose to use model-free learning to
complement a model-based nonlinear control to estimate
the unknown parameters of the model. Here the control
goal, i.e., state or output trajectory tracking, is handled by
the model-based controller. The learning algorithm is used
to improve the tracking performance of the model-based
controller. Once the learning algorithm has converged, one
can carry on using the nonlinear model-based feedback
controller alone, without the need of the learning algo-
rithm. Moreover, we believe that this type of controller can
converge faster to an optimal performance, comparatively
to the pure model-free controller. The reason is that the
model-free algorithms assume no knowledge about the
system, and thus start the search for an optimal control
signal from scratch. On the other hand, by ‘partly’ using
a model-based controller we are taking advantage of the
partial information given by the physics of the system.

A modular design merging model-based control and an
extremum seeker has been proposed in Haghi and Ariyur
[2011, 2013], Benosman and Atinc [2012, 2013], Atinc and
Benosman [2013], Benosman [2014b,a], Xia and Benosman
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[2015]. In Haghi and Ariyur [2011, 2013], extremum seek-
ing is used to complement a model-based controller, under
linearity of the model assumption in Haghi and Ariyur
[2011], or under the assumption of linear parametrization
of the control in terms of the uncertainties in Haghi and
Ariyur [2013]. The modular design idea of using a model-
based controller with ISS guarantee, complemented with
an ES-based module can be found in Atinc and Benosman
[2013], Benosman [2014b,a], Xia and Benosman [2015],
where the ES was used to estimate the model parame-
ters, and in Benosman and Atinc [2013], Benosman [2015]
where feedback gains were tuned using ES algorithms.
The work of this paper falls in this class of ISS-based
modular indirect adaptive controllers. The difference with
other ES-based adaptive controllers is that, due to the ISS
modular design we can use any model-free learning algo-
rithm to estimate the model uncertainties, not necessarily
extremum seeking-based. To emphasize this we show here
the performance of the controller when using a type of
RL-based learning algorithm.

The rest of the paper is organized as follows. In Section
2, we formulate the problem. The nominal controller de-
sign are presented in Section 3. In Section 3.2, a robust
controller is designed which guarantees ISS from the esti-
mation error input to the tracking error state. In section
3.3, we introduce the RL GP-UCB algorithm as a model-
free learning to complement the ISS controller. Section
4 is dedicated to an application example and the paper
conclusion is given in Section 5.

Throughout the paper, we use | - || to denote the Eu-
clidean norm; i.e., for a vector z € R™, we have ||z| £

llzlla = VaTz, where 27 denotes the transpose of the
vector x. We denote by Card(S) the size of a finite set

S. The Frobenius norm of a matrix A € R™*™, with
elements a;j, is defined as ||A|p = \/2?21 > i laig?.
Given ¢ € R™, the signum function is defined as

sign(z) = [sign(zy), sign(xs), ---, sign(x,,)]T, where
sign(.) denotes the classical signum function.

2. PROBLEM FORMULATION

We consider here affine uncertain nonlinear systems of the

form
@ f(x) + Af(t, ) + g(x)u, (1)
y = h(z),

where z € R", u € RP, y € R™ (p > m), represent
the state, the 1nput and the controlled output vectors,
respectlvely Af(t,z) is a vector field representing additive
model uncertainties. The vector fields f, Af, columns of
g and function h satisfy the following assumptions.

Assumption A1 The function f : R® — R™ and the
columns of g : R™ — RP are C* vector fields on a bounded
set X of R™ and h : R® — R™ is a C* vector on X. The
vector field Af(z) is C! on X.

Assumption A2 System (1) has a well-defined (vector)
relative degree {ry, 72, -+, r,} at each point 2° € X,
and the system is linearizable, i.e., >..", r; = n.

Assumption A3 The desired output trajectories y;q
(I <4 < m) are C™ functions of time, relating desired
initial points y;4(0) at ¢t = 0 to desired final points y;q(ty)
at t = tf.

Our objective is to design a state feedback adaptive con-
troller such that the output tracking error is uniformly

bounded, whereas the tracking error upper-bound is func-
tion of the uncertain parameters estimation error, which
can be decreased by the model-free learning. We stress
here that the goal of learning algorithm is not stabiliza-
tion but rather performance optimization, i.e., the learn-
ing improves the parameters’ estimation error, which in
turn improves the output tracking error. To achieve this
control objective, we proceed as follows: First, we design
a robust controller which can guarantee input-to-state
stability (ISS) of the tracking error dynamics w.r.t the
estimation errors input. Then, we combine this controller
with a model-free learning algorithm to iteratively esti-
mate the uncertain parameters, by optimizing online a
desired learning cost function.

3. ADAPTIVE CONTROLLER DESIGN
3.1 Nominal Controller

Let us first consider the system under nominal conditions,
i.e., when Af(t,x) = 0. In this case, it is well know, e.g.,
Khalil [2002], that system (1) can be written as

y () = bE®) + AE®)ult), (2)

where
<W>=[“w><”w oy @),
():f()'w§W% (3)
&) = [ylt), -, v, 1<i<m

The functions b(£), A(£) can be written as functions of
f, g and h, and A(&) is non-singular in X, where X is
the image of the set of X by the diffeomorphism x — &
between the states of system (1) and the linearized model
(2). Now, to deal with the uncertain model, we first need
to introduce one more assumption on system (1).

Assumption A4 The additive uncertainties Af(¢,z) in
(1) appear as additive uncertainties in the input-output
linearized model (2)-(3) as follows:

y (b)) = b)) + AE(D)u(t) + Ab(t, (1), (4)
where Ab(t, &) is C! w.r.t. the state vector £ € X.

It is well known that the nominal model (2) can be easily
transformed into a linear input-output mapping. Indeed,
we can first define a virtual input vector v(t) as

v(t) = bE)) + A(E())u(?)- (5)
Combining (2) and (5), we can obtain the following input-
output mapping

y () = (). (6)
Based on the linear system (6), it is straightforward to
design a stabilizing controller for the nominal system (2)

un = ATHE) [us(t,€) = b(E)], (7)
1

where v is a m x 1 vector and the i-th (1 <7 < m) element
vg; 18 given by

i i i —1 i—1

Vsi = y('r" K;L’l (yz(7 )~ yl(Zin ))

== Ki(yi = yia)-
(8)

If we denote the tracking error as e;(t) = y;(t) — yia(t),

we obtain the following tracking error dynamics

e (1) + KL eV 4+ Ket) =0, (9)
where i € {1, 2, ---, m}. By properly selecting the gains
K; wherei€ {1, 2, ---, m}and j € {1, 2, -+, r;}, we
can obtain global asymptotic stability of the tracking er-

rors e;(t). To formalize this condition, we add the following
assumption.
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