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Abstract: Consider a following transportation problem: given a set of nodes, some pairs of them are
connected; each node has some initial quantity of a single-type product and a demand of the same
product; the amount of product that can be transferred between connected nodes per time unit is limited;
assuming that summary demand equals summary initial quantity of the product, what is the minimal
time required to satisfy all the demands? For the case of constant capacities over time for each pair
of connected channels, this problem is quite a simple optimization problem (linear programming or
simpler) but might become very hard if it is not constant. In this paper we present a proof that for the
problem with “averagable” in some sense capacity functions one can construct a suboptimal solution
based on the solution of the “averaged” problem that happens to be asymptotically optimal.
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1. INTRODUCTION

Transportation problem is probably one of the most researched
optimization problems. Transportation technologies drastically
influence many aspects of humanity evolution in general. In
many cases it happens that one can improve utility of a trans-
portation process in large systems simply by a proper adjust-
ment the system parts. The question of “optimal adjustment”
thus leads to some optimization problems which are in general
simply referred to as transportation problems in mathematics.

Although there are numerous works on transportation problem
in the field of mathematical optimization, in this paper we are
mostly interested in the transportation models that include some
kind of uncertainty. In general it is a trend (in many optimiza-
tion problem applications) of last few decades not to find an
optimal plan for a one particular scenario but rather give a plan
that works optimal or near optimal in a large number of possible
situations (e.g. optimizing the worst-case scenario, optimizing
average performance or some other criterion). The necessity of
these approaches is typically caused by discrepancy of physi-
cal behaviour and mathematical models. It is well-known that
mathematical models cannot be exact, but direct inclusion of
the “uncertainty” in the model might significantly improve the
accuracy.

In the study of transportation problem this issue is addressed
in many works including stochastic formulations researched by
Mahapatra et al. (2013); Tan et al. (2013); uncertain models in
the works of Yang et al. (2015); Gabrel et al. (2014); models
with fuzzy constrains Kulak and Kahraman (2005); Lau et al.
(2009); Basirzadeh (2011); Giri et al. (2015); Srinivas and
Ganeshan (2015) and many other works.

Next, one of the important aspect of transportation problems
is temporal dimension. The problems that does not include
study of flowing over time processes are usually attributed as
static and contrary, dynamic problems imply the study of the

flowing over time transportation processes. Detailed overview
of dynamic transportation problems is given by Pillac et al.
(2013); Ran and Boyce (2012).

Motivation of the current work is focused on the fact that ex-
isting techniques of handling the uncertainties does not include
varying over time uncertainties, or in other words both dynamic
and uncertain aspects rarely appear in the same model, see
Pillac et al. (2013).

The contribution of this paper is the study of a flow-typed
transportation problem under a time-varying capacity func-
tions. Here we focus only on the aspect of capacities and ignore
cost constrains that allows us to obtain some interesting results.
In general, proposed method is to solve a rather simple “aver-
aged” problem and adapt the solution for initial problem. In this
method some kind of prediction is conducted but on the other
hand we try to include uncertainties in this prediction. Thus,
we need a model to be regular in some sense. Necessary condi-
tions for such prediction is strictly described by “averagability”
which includes the cases of periodic functions and some normal
stochastic processes (like Wiener process).

Summary, the main results of the paper are the concept of ca-
pacity averaging, proof of its asymptotic optimality (compared
to averaged problem) and examples of its possible applications.

The paper is organized as follows: section 2 contains problem
formulation; in section 3 the main results are presented, namely
class of averagable functions and corresponding theorem that
describes suboptimal control for averagable functions; section
4 contains examples of application: possible interpretation of
a random process as an averagable function and application to
load balancing problem.
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2. PRELIMINARIES
2.1 Problem in study

Suppose there is a directed graph G = (V, E), V is a set of nodes
/ vertices (|V| = n) and E is a set of edges / arcs between the
nodes, E C V x V. Assuming that all the vector inequalities
are component-wise inequalities, consider the following trans-
portation problem

minimize T,

X = Bu,

x(0) =x": x(7) =x", ey
x(t) >0,

0< Lt,'j(l‘) < C,‘j(l‘).

subject to

Here, x(t) = (x1(t),x2(t),...,x,(¢t))T is the state vector (or
phase variables), x;(r) represents the volume of a product of
node i at time moment . ¢;;(f) represents capacity of an arc
between nodes i and j (note: undirected case can be reduced to
directed one by substituting undirected edge with two directed
arcs) and so, for any time interval [f],1;] amount of product
that can be send from i to j by corresponding arc is limited
to f,’lz cij(t)dt. Next, we assume that there is some mapping
between the the pairs of nodes and several first natural numbers,
B is the corresponding incidence matrix, if e connects i to j
then B, = 1, Bj, = —1 and By, = 0 for all other k. With the
mentioned mapping ¢;;(r) forms the vector ¢(r) and u;;(¢) forms
the vector u(¢). x~ is the initial product distribution and x* is
a demand vector. Thus, the problem is to transit the state from
X~ to X" in the minimum possible time.

Throughout the paper we will denote the optimal solution of (1)
with input x~,x, ¢ as 7% (x7,x ", ¢) or simply 7*(c) if the other
two arguments do not influence the context.

If all the c;;(¢) does not vary over time then (1) becomes rather
simple optimization problem — a linear programming problem
and parametric flow problem in particular (see Malkovskii
(2015)). It can be easily explained by the fact that with constant
capacities optimal control can be searched without loss in class
of constant control (that is, u;;(t) does not vary over time as
well).

3. MAIN RESULTS

First, one simple lemma is required to proceed for the main
result.

Lemma 1. Consider (1) with input x~,x™ and constant vector-
function c(¢) = ¢. There exists constant optimal control u(z) = a
such that subgraph G' =< V,E' > with E' = {(i, j) € E | ii;; >
0} does not contain a cycle.

Proof. Existence of constant control: let u*(r) be some optimal
control. Then let

Due to this definition

/OT* a(t)dr = /OT u*(1)dt,

thus @ transits the state from x~ to x* in time 7*. Due to
linearity of trajectory induced by @ and the fact that x~ > 0

and xT > 0, @ produces valid trajectory for and thus, @ is an
optimal control as well.

Existence of acyclic control: Let @ be such constant optimal
control that minimizes quadratic form
n

Y .

ij=1
Such control cannot contain a cycle: if there is a cycle, by
reducing u;; on that cycle by the same value the trajectory
will not change (due to the fact that cycles form a kernel of
incidence matrix B) and mentioned quadratic form will have
decreased value and thus we have a contradiction.

Next, lets describe the class of capacity function which we are
considering:

Al. We will call the function f : [0; +eo] — R averagable if the
next limit exists
1 T
0 = lim — t)dt oo,
<avg(f) ngwr/o fl)dr <+
Next, we need two auxiliary lemmas about averagable func-
tions:
Lemma 2. 1f f is averagable function then for any 7 > 0 and
0 < & < 1 there exists —o < ¢ < 0 such that
T+t

VT>0 T+ F@)dt > avg(f)(1—¢€)(t+0).

Proof. Due to L [/ 77

that

f — avg(f) for any € > 0 exists 7’ such

T+t

V>t % f@)dt > avg(f)(1—¢)

andsoif 0 <0

T

T+7
f@)dt > avg(f)(1—¢€)(t+0).

Thus we need to simply take o as
1 T+t

= min —————— t)dt — 7.

e, avg(f)(1—¢) Jr £()
Since for T = 0 expression under the min takes the value of 0
then we have that ¢ < 0 and thus satisfying the inequality for
T>17.
Lemma 3. 1If f is averagable function then for any 7 > 0 and
€ > 0 there exists 0 > ¢ < oo such that

T+o+7T
V>0 /T+ F(t)dt < avg(£)(1+€)(1 + 6).

V> 1

(o2

Proof. Due to L [/7

that

f — avg(f) for any € > 0 exists 7’ such

T+t
ft)dt <avg(f)(1+¢€)t.

Thus, taking ¢ = 7’ we get that
T+o+7 T+o+71
vt >0 / f(0)dt g/ Sf(t)de
T+o T
<avg(f)(1+¢)(t+0).

v >1:

Finally, next theorem describes how to get a suboptimal solu-
tion of (1) with averagable capacity functions.

Theorem 1. Consider (1) with averagable capacity functions
cij(t). Let {x; }7_, and {x;" }°_, be such sequences that

lim 7 (%, x{ €)=+
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