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1. INTRODUCTION

In the past several years, there has been considerable
interest in recursive designs for nonlinear control schemes.
Most of these approaches are traditionally based on the
construction of appropriate Lyapunov function. On the
contrary, contraction theory is a recent tool for analyzing
the convergence behavior of nonlinear systems (Lohmiller
and Slotine (1998),Lohmiller and Slotine (2000),Majeed
and Kar (2013)). It is treated as incremental form of stabil-
ity since contraction analysis provides framework enabling
to study the stability of nonlinear system trajectories with
respect to each other(Majeed and Kar (2012)). For non-
linear systems, incremental stability is a stronger property
than global exponential convergence to a single trajectory.

This paper addresses the problem of the use of an incre-
mental approach, i.e contraction theory to the integrator
back-stepping design of stabilization to the underwater
vehicleMajeed and Kar (2015). The present work is the
application of the newly introduced contraction based
input to state stability analysis (Zamani and Tabuada
(2011)). In the literature, the property of Input to state
stability (ISS) has proven a valid instrument in order to
study questions of robust stability for finite-dimensional
nonlinear systems (Angeli (2002)).

Consider the six degrees of freedom (DOF) nonlinear un-
derwater vehicle equations of motion in abbreviated form
(Fossen (1994)).

Mν̇ + C(ν)ν +D(ν)ν + g(η) = B(ν)u (1)

η̇ = J(η)ν (2)

T u̇+ u = uc (3)

where (1) is the velocity dynamics, (2) is the kinematics
and (3) is the actuator dynamics of an underwater vehicle.

ν = (u, v, w, p, q, r)
T

is a vector of body fixed linear and

angular velocity components and η = (x, y, z, φ, θ, ψ)
T
is a

vector of positions (x, y, z) and Euler angles (φ, θ, ψ). The
components of ν and η corresponds to the 6 DOF motion
variables in surge, sway, heave, roll, pitch, and yaw. u ∈
Rp (p ≥ 6) is a vector of actual control inputs, and uc ∈ Rp

is a vector of commanded actuator inputs. Furthermore,
g(η) is an unknown vector of restoring forces and moments
while B(ν) is a known 6×p control matrix. J(η) is a 6×6
known block diagonal transformation matrix relating to
the body reference frame to the inertial reference frame. M
is inertial matrix (including hydrodynamic inertia), C(ν) is
the centripetal forces, and D(ν) is hydrodynamic damping
matrix. T = diag([ti]) is a p×p diagonal matrix of positive
unknown actuator time constants (ti > 0).

From the above mentioned equation of motion of under-
water vehicles, Healey and Macro proposed to describe the
vehicle speed equation as follows Healey and Marco (1992)

(m1 −Xu̇)u̇1 = Xu|u|u1 |u1|+Xn|n|n |n| (4)

where u1 is the surge velocity and n is the propeller
revolution. This system can be rewritten according to

mν̇ + d(ν)ν = u, d(ν) = do |ν| (5)

T u̇+ u = uc (6)

where m = (m1 −Xu̇)
/
Xn|n|,do = −Xu|u|

/
Xn|n|,u=n |n|

and ν = u1. The last equation is included to describe the
actuator dynamics. For simplicity of algebraic manipula-
tion, here it is considered the speed stabilization of the
underwater vehicle to describe the incremental input-to-
state behavior of the vehicle. Interested authors can define
the highly unstable situation of the vehicle at which the
same proposed approach is able to stabilize the vehicle.

The paper is outlined as follows: Section 2 of the paper
discusses control systems and stability notions. Section
3 describes the design of incremental speed stabilization
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for the underwater vehicle. The numerical simulation is
presented in section 4 to confirm the incremental stability
of the vehicle. Finally the conclusions are given in section
5.

2. CONTROL SYSTEMS AND STABILITY NOTIONS

2.1 Notation

The symbol R,R+ and R+
0 denote the set of real, positive,

and nonnegative real numbers, respectively. The symbols
Im, and 0m denote the identity and zero matrices on Rm.
Given a vector x ∈ Rn, we denote by xi and the ith element
of x,and by ‖ x ‖ the Euclidean norm of x;we recall that

‖ x ‖=
√
x2
1 + x2

2 + · · ·+ x2
n. given a measurable function

f : R+
0 → Rn, the (essential) supermom of f is denoted

by ‖f‖∞. we recall that ‖f‖∞ := (ess)sup {‖f‖ , t ≥ 0} ; f
is essentially bounded if ‖f‖∞ < ∞.for given time τ ∈
R+,define fτ so that fτ (t) = f (t) for any t ∈ [0, τ),and
f (t) = 0 elsewhere: f is said to be locally essentially
bounded if for any τ ∈ R+,fτ is essentially bounded. A
continuous function γ : R+

0 → R+
0 is said belong to class

κ if it is strictly increasing and γ (0) = 0; γ is said to
belong to class κ∞ if γ ∈ κ and γ (r) → ∞ as r → ∞. A
continuous function β : R+

0 × R+
0 → R+

0 is said belong to
class ? if, for each fixed s, the map β (r, s) belongs to class
κ∞ with respect to r and, for each fixed r, the map β (r, s)
is decreasing with respect to s and β (r, s) → 0 as s → ∞.

2.2 Control Systems

The class of control systems that we consider in this paper
is formalized in the following definition.
Definition 2.1 : A control system is a quadruple:

Σ = (Rn, U, υ, f) ,

where

• Rn is the state space;
• U ⊆ Rm is the input space;
• υ is a subset of the set of all locally essentially
bounded functions of time from intervals of the form
]a, b[⊆ R to U with a < 0, b > 0;

• f : Rn × U → Rn is a continuous map satisfying
the following Lipschitz assumption: for every compact
set Q ⊂ Rn, there exists a constant Z ∈ R+ such
that ‖f(x, u)− f(y, u)‖ ≤ Z ‖x− y‖ , ∀x, y ∈ Q
and all u ∈ U

A curve ξ :]a, b[→ Rn is said to be a trajectory of Σ if
there exists u ∈ υ satisfying:

ξ̇ (t) = f (ξ(t), u(t)) (7)

for almost all t ∈]a, b[. We also write ξxu(t) to denote the
point reached at time t under the input u from initial con-
dition x = ξxu(0); this point is uniquely determined, since
the assumptions on f ensure existence and uniqueness of
trajectories Sontag (1998). We also denote an autonomous
system Σ with no control inputs by Σ = (Rn, f) . A control
system Σ is said to be forward complete if every trajectory
is defined on an interval of the form ]a,∞[. Sufficient and
necessary conditions for a system to be forward complete
can be found in Angeli and Sontag (1999). A control sys-
tem Σ is said to be smooth if f is an infinitely differentiable
function of its arguments.

2.3 Stability Notations

Here, we recall the notions of incremental global asymp-
totic stability (δ−GAS) and incremental input-to-state
stability (δ−ISS).

Definition-1 (Angeli (2002)): A control system Σ is incre-
mentally globally asymptotically stable (δ−GAS) if it is
forward complete and there exists a function β such that
for any t ∈ R+

0 ,any x, x′ ∈ Rn and any u ∈ υ the following
condition is satisfied.

‖ξxu(t)− ξx′u′(t)‖ ≤ β (‖x− x′‖ , t) (8)

Whenever the origin is an equilibrium point for Σ, δ−GAS
implies global asymptotic stability (GAS).
Definition-2 (Angeli (2002)): A control system Σ is in-
crementally input-to-state stable (δ−ISS) if it is forward
complete and there exist a function β and a κ∞ function γ
such that for any t ∈ R+

0 , any] x, x
′ ∈ Rn, andanyu, u′ ∈ υ,

following condition is satisfied.

‖ξxu(t)− ξx′u′(t)‖ ≤ β (‖x− x′‖ , t) + γ (‖u− u′‖∞) (9)

By observing (8) and (9), it is readily seen that δ-ISS
implies δ-GAS while the converse is not true in general.
Moreover, if the origin is an equilibrium point for Σ, δ-ISS
implies input-to-state stability (ISS).

2.4 Descriptions of Incremental Stability

One of the methods for checking δ−GAS and δ−ISS prop-
erties consists in using Lyapunov functions. The Lyapunov
characterizations of δ−GAS and δ−ISS properties were
developed in Angeli (2002). In this paper we follow an
alternative approach based on contraction metrics. The
notion of contraction metric was popularized in control
theory by the work of Slotine Lohmiller and Slotine (1998).
Before going through the next definition, we need to intro-
duce variational systems and the notion of a Riemannian
metric.

The variational system associated with a smooth au-
tonomous system Σ = (Rn, f) is given by the differential
equation

d

dt
(δξ) =

∂f

∂x

∣∣∣∣
x=ξ

δξ, (10)

where δξ is the variation 1 of a trajectory of Σ. Similarly,
the variational system associated with a smooth control
system Σ = (Rn, U, υ, f) , is given by the differential
equation

d

dt
(δξ) =

∂f

∂x

∣∣∣∣ x=ξ
u=u

δξ +
∂f

∂u

∣∣∣∣ x=ξ
u=u

δu (11)

where δξ and δu are variations of a state and an input
trajectory of Σ, respectively.

A Riemannian metric G : Rn → Rn×n is a smooth map
on Rn such that, for any x ∈ Rn, G(x) is a symmetric
positive definite matrix Lee (2003). For any x ∈ Rn and
smooth functions I, J : Rn → Rn, one can define the
scalar function 〈I, J〉Gas IT (x)G(x)J(x). We will still use

1 The variation δξ can be formally defined by considering a family
of trajectories ξxu(t, ε) parameterized by ε ∈ R. The variation of the

state is then δξ = ∂ξxu
∂ε
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