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Abstract: This work presents a novel constrained nonlinear state estimation approach for
nonlinear dynamical systems. The proposed approach combines two key elements from well
know Gaussian Sum Unscented Kalman Filter (GS-UKF) and Unscented Recursive Nonlinear
Dynamic Data Reconciliation (URNDDR) approaches. The proposed approach uses sum of
Gaussians representation in GS-UKF and explicit constrained update in URNDDR to obtain
feasible state estimates. The benefits of the proposed approach are demonstrated over the
available constrained GS-UKF variants using a three state isothermal batch process case study

available in literature.
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1. INTRODUCTION

Recursive Bayesian Estimation algorithms are widely used
in control, optimization and process monitoring applica-
tions. Bayesian estimation algorithms use available non-
linear process and measurement models along with plant
measurements to obtain conditional densities of states.
However, a typical estimation algorithm often encounter
two practical challenges:

(i) representation of non-Gaussian densities driven by non-
linear process models, and

(ii) infeasible state estimates resulted due to unconstrained
Bayesian update.

Bayes’ rule has closed form Kalman Filter (KF) solu-
tion [Kalman 1960] when the densities, namely, prior
and likelihood are Gaussian. However, the KF solution is
suboptimal if either of these densities are non-Gaussian.
Further, KF solution or Bayes’ rule does not account
for state constraints. To overcome these limitations as-
sociated with KF, various nonlinear state estimation al-
gorithms have been developed in literature. Extended
Kalman Filter (EKF) [Anderson and Moore 1979], Un-
scented Kalman Filter (UKF), Julier and Uhlmann [2004],
Ensemble Kalman Filter (EnKF) [Gillijus et al. 2006], Par-
ticle Filter (PF) [Arulampalam et al. 2002] and Gaussians
Sum Filters (GS-F) [Sorenson and Alspach 1971, Kotecha
and Djuric 2003, Simandl 2005] are the well known non-
linear state estimation algorithms available in literature.

Among the estimation algorithms, EKF is limited to sys-
tems with near Gaussian densities since it linearizes pro-
cess and measurement models to transform the moments
of state conditional densities [Julier and Uhlmann 2004].
Whereas the other approaches, namely, UKF, EnKF and
PF use set of samples to represent non-Gaussian densities
and does not require to perform linearization step as in
EKF. Instead, samples will be used to transform condi-
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tional densities. Among these three sampling based ap-
proaches, UKF has gained much attention [Qu and Hahn
2009, Julier and Uhlmann 2004, Kandepu et al. 2008] since
it uses only deterministic choice of 2n + 1 samples, known
as sigma points. Here n is dimension of process states.
Where as, EnKF and PF use Monte Carlo based sampling,
which in principle require large number of samples [Aru-
lampalam et al. 2002]. UKF assumes that the prior density
to be Gaussian, a common violation for nonlinear/non-
Gaussian systems and does not address the objective of
representation of nonlinear/non-Gaussian [Arulampalam
et al. 2002]. Gaussian Sum Unscented Kalman Filter (GS-
UKF), belongs to the class GS-F, overcomes the limita-
tions of UKF by representing non-Gaussian densities with
sum of Gaussians. GS-F are developed with a premise that
“sum of Gaussians can approximate any density to an
arbitrary degree of accuracy [Sorenson and Alspach 1971].
To transform sum of Gaussians through nonlinear process
model, GS-UKF adopts sigma points at each Gaussian
and subsequently obtain sum of Gaussian prior density
[Simandl 2005]. Further, update step using Bayes’ rule
results in sum of Gaussians posterior density. Other GS-F
variants namely, Gaussian Sum - Extended Kalman Filter
[Sorenson and Alspach 1971] and Gaussian Sum - Particle
Filter [Kotecha and Djuric 2003]. However, with the choice
of EKF and PF at each Gaussian of sum of Gaussians,
these approaches also suffer form the issues associated with
EKF and PF, respectively.

While GS-UKF has addressed the problem of nonlinear
or non-Gaussian representation, unconstrained Bayesian
update step can lead to infeasible state estimates. In
literature, various strategies are developed to address this
problem, which can be classified into two strategies.

(i) incorporates constraints on unconstrained posterior
moments, using projection [Teixeira et al. 2010] or density
truncation steps [Simon 2010)

(ii) modifies unconstrained update step in Bayes’ rule into
an explicit constrained optimization problem [Vachhani
et al. 2005, 2006].
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In literature, Projection based Gaussian Sum Constrained
Unscented Kalman Filter (PC-GS-UKF) by Ishihara and
Yamakita [2009] and density Truncation based Gaussian
Sum Unscented Kalman Filter (TC-GS-UKF) by Straka
et al. [2012], are the available extensions of constrained
GS-UKF. Both these approaches use unconstrained up-
date step followed by constraint incorporation step. More-
over these approaches use unconstrained posterior mo-
ments in subsequent time steps. Thus, these developments
have a severe limitation that the constrained state esti-
mates are based on the quality of unconstrained posterior
moments. To overcome this problem, in this work, we
present a constrained GS-UKF approach which incorpo-
rates state constraints through an explicit optimization
problem. Thus, the proposed approach can use constrained
posterior moments in subsequent time instants.

Organization of this paper is as follows: Section 2 presents
the problem statement for constrained nonlinear state es-
timation. Section 3 presents Unscented Recursive Nonlin-
ear Dynamic Data Reconciliation (URNDDR) constrained
UKF approach. Section 4 presents the proposed Optimiza-
tion Based Constrained Gaussian Sum Unscented Kalman
Filter (OC-GS-UKF) approach and its utility is demon-
strated in Section 5, using a three state isothermal batch
process available in literature. This paper is concluded in
Section 6.

2. PROBLEM STATEMENT

Consider a sampled data system consisting of nonlinear
process dynamics, a linear measurement function and
interval (bound) constraints on the states as,

ty

x(tg) = x(tp—1) + / f(x(t),u(t))dt + w(tg), (1)
yi = Hx(tg) + Vi, (2)
x(to) ~ N (X0/0, Pojo) (3)
xr < x(tk) < xy (4)

where, x(tx_1),x(tx) € R™u(t) € RP, represent the state
and input vectors at time ¢ while y; € R™, w(t;) € R",
vi € R™ represent observation, state noise and mea-
surement noise, respectively at time tj. Further, w(ty) ~
N(0,Q) and vi, ~ N(0, R) are assumed to be independent
Gaussian, white, stochastic processes The initial state is
unknown and assumed to have a Gaussian distribution as
in Eq. (3). Function f : R™ x R? — R™ represents the
nonlinear state dynamics and H € R™*" represents the
linear observation model. Measurements y; are assumed
to be available at regularly spaced sampling instants ¢, at
k=0,1,2,3,... with Ty = t§ — tx_1 being the sampling
period. For ease of notation, we define x5, = x(t3). Eq. (4)
specifies the interval (bound) constraints on each compo-
nent of state vector xi. The filtering problem is to find
a feasible point estimate for xj, governed by dynamics in
Eq. (1), using available measurements y1,ya,. .., yr which
are related to the states as in Eq. (2) and subjected to con-
straints given in Eq. (4). In Eq. (4), x1, and xy represents
the lower and upper bounds on states, respectively.

Now we will present the proposed constrained UKF ap-
proach which represents underlying densities with single

Gaussian and uses an explicit optimization problem to
incorporate state constraints.

3. UNSCENTED RECURSIVE NONLINEAR
DYNAMIC DATA RECONCILIATION (URNDDR)

Unscented Recursive Nonlinear Dynamic Data Reconcili-
ation approach uses a three step framework for obtaining
constrained posterior moments.

(i) at (k—1)*" time instant, it uses interval constrained un-
scented transformation (ICUT) approach [Vachhani et al.
2006] to generate feasible sigma points,

(ii) transforms the constrained sigma points through the
process model to obtain constrained predicted sigma
points at k** time instant and subsequently represents the
prior with a Gaussian density, and

(iii) performs constrained update step to obtain feasible
posterior moments at & time instant.

The details of these three steps are presented next.

8.1 Constrained sigma point generation wusing interval
constrained unscented transformation

Consider a Gaussian random variable x;_; with mean

Xi—1|k—1 and covariance Py_),_; at time ;. The ICUT

approach deterministically selects 2n+1 constrained sigma

points [Vachhani et al. 2006, Teixeira et al. 2010],

_ Xp—1|k—1> i=0
Xg,_cf\k—l {ﬁk1k1+9i[\/13]z‘7 i=1,2,...,n
Xp_1jk—1— 0i—n[VPli—n, i=n+1,n+2,....2n

(5)

and corresponding weights as,

) br—1, i=0
wi) = ¢ ax 10 + b1, i=1,2,...n (6)
ap_10i—n +br_1, i=n+1n+2,...,2n
where
2k —1
Gt = _ (@r- 1) ™
2(n+ H)[Z Oik—1— (2n+1)v/n+ H,:|
i=1
1
by 1= ——— —ax_1V 8
k—1 2n+r) Gg—1VNn+ K (8)
92-,1@_1:12;12"(91',1')7 i=1,2,...,2n 9)

where, for j=1,2,...,n; 1 =1,2,...,2n
Vn+k
” min(\/n—i—n,
@jﬂ':

if Sj;=0

XL, — Xj k—1|k—1
%) if S;;<0

S0 (10)
XUy, — X5 L _
min(* /n + K, M) it S;;>0
S.0)
with S £ [\/Pkfl\kfl *\/Pk—l\kflj (11)

In Eq. (5), ngl)‘ kfl,w,(jfl) represent the i*" constrained
sigma point and its corresponding weights, respectively. In
absence of state constraints, the constrained sigma point
selection procedure will converges to well known unscented
transformation approach [Julier and Uhlmann 2004].

3.2 Propagation of sigma points:

The constrained sigma points x,(;fl) k-1 obtained in Eq. (5)
are then propagated through the process model (Eq. (1))

to obtain the predicted sigma points x,(:lkc)_l as,
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