Contents lists available at ScienceDirect

Chemical Engineering & Processing: Process Intensification

journal homepage: www.elsevier.com/locate/cep

Entrainment and holdup of gas-liquid-liquid dispersion in a downflow gasliquid-liquid contactor

Bharath Kumar Goshika, Subrata Kumar Majumder*

Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India

A R T I C L E I N F O

ABSTRACT

The gas-liquid-liquid downflow three-phase contactor has the advantage by dispersing gas and lighter liquid into the contactor in a continuous denser phase without any requirement of external power for gas-liquid-liquid processes like reactions and removal of organic compound dissolved in liquid. Present study focuses on entrainment rate of gas and lighter liquid and gas holdup in gas-liquid-liquid downflow contactor. Gas holdup and entrainment are studied using Paraffin liquid-water and Kerosene-water, in the gas-liquid-liquid downflow contactor. The gas holdup variation with fixed lighter liquid volume at different gas flow rates is enunciated based on different operating conditions. Models are developed for gas entrainment and gas holdup in terms of different dimensionless groups consisting of operating variables which can be used to interpret the gas-liquidliquid downflow contactor.

1. Introduction

Keywords:

Downflow

Three-phase

Entrainment

Holdup

Dispersion

Gas-liquid-liquid

Gas-liquid-liquid mass transfer and reactions are important unit operations in chemical and biochemical processes. There are many conventional contactors or column reactors used for liquid-liquid operations in presence of gas. The removal of organic polutent from waste water by a liquid through liquid-liquid interface, gas-liquid-liquid reactions (as shown in Table 1) are some important applications.

The removal efficiency can be increased by increasing the contact time between the two liquid phases by downward movement agaist its buyancy by relatively higher downward movement of another liquid. Introduction of inert gas (air, nitrogen, oxygen) in the contactor may increase the further efficiency of the mass transfer. The inert gas acts as a mixing agent to increase the energy in the liquid-liquid (L-L) system. This increased energy causes an increase in dispersion of droplets and hence more separation between phases [14-18]. In continuous large scale operation some of the examples for gas-liquid-liquid are carbonylation, hydro formylation in the petrochemical industry, and gasaided mass transfer (e.g., extraction). The performance of gas-aided mass transfer is approximately three times higher than liquid-liquid mass transfer without gas [16]. Multiphase catalytic reactions have numerous applications in chemical industries including newly emerging applications in fine chemicals and pharmaceuticals. The analysis of three-phase catalytic reactions are reported including both theoretical and experimental studies by different investigators [17,18]. Multiphase catalytic reactions involving gas, liquid and liquid reactants are

commonly encountered in a variety of chemical transformations. These reactions are generally classified as homogeneous and heterogeneous catalysis depending on the nature of the catalyst. It is well known that homogeneous catalysts consisting of soluble metal complexes have high activity and selectivity compared to the heterogeneous catalysts [13]. The development of biphasic catalysis involving two immiscible liquids has a major advantage in this context [19] and has already indicated its potential for wide range of applications. Catalysis in two phase (liquidliquid) systems is generally referred as biphasic catalysis, however, many variations of such systems are practised depending on the objectives in specific reactions/processes. This concept involves selection of two liquid phases, such that the catalyst is soluble only in one phase, while the product exists in the other phase. The recent development of water soluble metal complexes has made it feasible to conduct gas-liquid-liquid catalytic reactions in the biphasic mode to achieve easy separation of the catalyst and products [13]. Many useful reactants and products in industrial processes consist of water immiscible organic compounds and hence, the concept of water soluble catalysis provides an important tool for separation of homogeneous catalysts and products.

The gas-liquid-liquid operations in the downflow contactors have many advantages over other conventional contactors, since it has the capability of fluid dispersing into the column without any external power requirement and it made attention to the scientific community for process intensification for achieving higher mass transfer and multiphase reaction. With the increasing energy costs and emission of

E-mail address: skmaju@iitg.ernet.in (S.K. Majumder).

https://doi.org/10.1016/j.cep.2018.01.011

^{*} Corresponding author.

Received 5 October 2017; Received in revised form 3 January 2018; Accepted 14 January 2018 Available online 17 January 2018 0255-2701/ © 2018 Elsevier B.V. All rights reserved.

Nomenclature					
A_r	Area ratio (-)				
С	Constant defined in model Eq. (2) $(-)$				
C_o	Distribution parameter $(-)$				
d_c	Column diameter (m)				
d_b	Bubble diameter (m)				
E_s	Kinetic energy (W)				
E_{um}	Energy used (W)				
E_{\min}	Minimum energy (W)				
Fr	Froude number $(=u_M^2/gd_c)$ (-)				
g	Gravitational acceleration (m/s ²)				
h_c	Height of column (m)				
h_m	Mixing height (m)				
H_p	Penetration depth				
H_{cl}	Height of continuous liquid (m)				
H_r	Ratio of height of three phase mixture to diameter of				
	$\operatorname{column}(h_m/d_c)(-)$				
H_{ll}	Height of lighter liquid (m)				
H_{ll-cl}	Height of mixture in column (m)				
Hg-ll-cl	Height of interface of the mixture (m)				
i.d	Inner diameter (m)				
k_m	Mixing loss coefficient (-)				
L_j	Jet length (m)				
L_c	Length of the column (m)				
m_g	Mass flow rate of gas (kg/s)				
m_m	Mass flow rate of mixture (kg/s)				
M_o	Morton number $(=g\mu_{sl}^4/\rho_{sl}\sigma_{sl}^3)$ (-)				
Ν	Number of repeated experiments				
Q_g	Gas entrainment rate (m ³ /s)				
Q_{cl-ll}	Continuous and lighter liquid mixture flowrate (m ³ /s)				
R^2	Correlation coefficient $(-)$				
Rej	Jet Reynolds number (= $\rho_l d_c u_j / \mu_l$				
Reg	Gas Reynolds number (= $\rho_g d_c u_{sg}/\mu_g$				
SE	Standard error (–)				
STDEV	Standard deviation				
u_b	Rise velocity of bubble (m/s)				
u _c	Velocity of continuous phase (m/s)				
u _d	Drift velocity (m/s)				
u_j	Jet velocity (m/s)				

u_s	Slip velocity (m/s)			
u _{sg}	Superficial gas velocity (m/s)			
u _{sl}	Superficial liquid velocity (m/s)			
U	Standard uncertainty			
u _{e,min}	Minimum entrainment velocity (m/s)			
V_c	Volume of continuous phase (ml)			
V_s	Volume of solvent (ml)			
We	Weber number $(=\rho_{sl}u_i^2d_n/\sigma)(-)$			
x	Mass quality (–)			
x_i	Experimental value at i			
\overline{X}	Mean of repeated experiments			
X	Lockhart-Martinelli parameter (–)			
Greek letters				
ε_{cl}	Continuous liquid hold up (–)			
ε_{II}	Lighter liquid hold up (–)			
ε _g	Gas phase hold up (-)			
ρ_{cl}	Continuous liquid density (kg/m ³)			
ρ _{ll-cl}	Lighter and continuous liquid mixture density (kg/m ³)			
ρg	Gas phase density (kg/m ³)			
μ_{cl}	Continuous liquid viscosity (kg/m.s)			
μ_{ll}	Lighter liquid viscosity (kg/m.s)			
μ_{ll-cl}	Lighter liquid and continuous liquid mixture viscosity (kg/			
1 1 0	m.s)			
σ_l	Surface tension of liquid (N/m)			
Ē	Average dissipation energy per unit volume (N m/s)			
η_m	Energy efficiency (–)			
Subscrip	ts			
cl	Continuous liquid			
11	Lighter liquid			
g	Gas			
g-ll-cl	Gas-lighter liquid-continuous liquid mixture			

0	
j	Jet velocity
m	Mixture
ll-cl	Lighter liquid-continuous liquid mixture
ca	Superficial gas

sg	Superficial gas	

s Superficial liquid

Table 1

Examples of gas-liquid-liquid catalytic reactions.

Reaction	Catalyst	Category	Author
Oligomerization of ethylene to a-olefins (SHOP process)	Ni-(C ₆ H ₅) ₂ PCH ₂ COOH in butanediol	G-L-L/organic phase catalysis	Bauer et al. [1]
Oligomerization of ethylene to a-olefins (SHOP process)	Ni-(C ₆ H ₅) ₂ PCH ₂ COOH in butanediol	G-L-L/organic phase catalysis	Mason [2]
Hydroformylation of propylene to n-butyraldehyde	Rh-TPPTS or Rh-BISBIS in aq. phase	G-L-L/water soluble catalysis	Kuntz [3]
Carbonylation of benzyl chloride to phenyl acetic acid	NaCo(CO) ₄ /Bu ₄ NBr; aq. NaOH	G-L-L/organo metallic PTC	Cassar and Foa [4]
Hydroformylation of propylene to n-butyraldehyde	Rh-TPPTS or Rh-BISBIS in aq. phase	G-L-L/water soluble catalysis	Kuntz [5]
Carbonylation of isobutyl phenyl ethyl alcohol to ibuprofen (Boots-Hoechst process)	$Pd(PPh_3)_2C1_2 - aq. HCI$	G-L-L/organic phase catalysis	Elango et al. [6]
Selective hydrogenation of a-f3 unsaturated aldehyde	Rh-TPPTS or Ru-TPPTS	G-L-L/water soluble catalysis	Grosselin et al. [7]
Hydroformylation of propylene to <i>n</i> -butyraldehyde	Rh-TPPTS or Rh-BISBIS in aq. phase	G-L-L/water soluble catalysis	Herrmann et al. [8]
Hydroformylation of I-hexene to heptaldehydes	Rh-BISBIS	G-L-L/water soluble catalysis	Herrmann et al. [9]
Hydroformylation of allyl alcohol	$HRh(CO)(PPh_3)_3$ <i>n</i> -heptanol-water	G-L-L/organic phase catalysis	Deshpande et al. [10]
Oligomerization of terminal alkynes	Rh/water soluble phosphines	G-L-L/water soluble catalysis	Baidossi [11]
Carbonylation of allyl chloride to vinyl acetic acid/crotonic acid	Pd/PPh ₃ /aq. NaOH	G-L-L-S	Prasad [12]
Hydrofonnylation of I-octene	(Rh(COD)Cl) ₂ ; Rh:TPPTS:	G-L-L/organic phase catalysis	Chaudhari et al. [13]

G-L-L: gas-liquid-liquid; G-L-L-S: gas-liquid-liquid-solid.

Download English Version:

https://daneshyari.com/en/article/7088890

Download Persian Version:

https://daneshyari.com/article/7088890

Daneshyari.com