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Abstract: Precise attitude estimation is important for navigation, guidance and control of
Micro Aerial Vehicles (MAV) as they are mostly equipped with low integrity sensors due to the
constraints on MAV payload and available power. The MAV sensors such as accelerometer and
magnetometer are prone to noise as they are placed in proximity to the motor due to constraints
on centre of gravity (CG). Data from a single sensor are not reliable for all operating points
of flight envelope as the motor vibration and magnetic flux due to the motor vary with RPM.
Hence accurate attitude estimation of MAV is achieved through multisensor data fusion. In
this paper, a modification to the classical cascade Kalman filter is proposed. Modified Cascade
Kalman Filter (MCKF) has better estimation performance as it is a single Kalman filter similar
to measurement fusion technique and also it restores the flexibility and computational efficiency
of state vector fusion method. A numerical example is presented wherein the derived MCKF is
implemented for the attitude estimation of MAV in the 6 DOF simulation model developed in
MATLAB/SIMULINK and also for a set of calibrated accelerometer and magnetometer sensor
data with motor noise acquired from the autopilot mounted on the rate table of the motion
simulator. It was found that MCKF exhibits substantially improved performance compared to
extended Kalman filter with only accelerometer data with motor noise.
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1. INTRODUCTION

Data fusion techniques combine data from multiple sensors
to achieve greater accuracy than that could be achieved by
using a single, independent sensor (James Llinas, 2008).
The concept of data fusion arises from the fact that
improvements in terms of classification error probability,
rejection rate and interpretation robustness, can only be
achieved by judicious combination of data from diverse
independent sensors (Pau, 1988).

In the past few decades various Kalman filter based algo-
rithms have been proposed for multisensor data fusion for
both military and civilian applications (Hall and Llinas,
1997) (Sasiadek and Hartana, 2000) (Gan and Harris,
2001) (Sun and Deng, 2004) (Majji et al., 2007) (Olfati-
Saber, 2007). These algorithms are used for fusion of
internal sensors, external sensors or both. Internal sensors
are those which provide the measure of physical variables
of the vehicle where as the external sensors furnish the
measure of the relationship between the vehicle and its
environment (Sasiadek and Hartana, 2000). Some exam-
ples for fusion of internal sensors are accelerometer with
magnetometer, fusion of inertial measurement unit (IMU)
data with GPS data. For fusion of external with internal
sensor, laser range finder with GPS forms a good example.

There are two widely used techniques for data fusion (Gan
and Harris, 2001). Method I is state vector fusion - In
this method there are two variants, in the first, the states
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are separately and parallely estimated in each sensor and
then fused in a central processor to obtain an improved
state estimate (Bierman and Belzer, 1985). In the second
variant, the state estimated in the first sensor acts as
initialized state for the second sensor and the complete
sensors array work in cascade fashion. Method II is mea-
surement fusion - This method utilizes a single Kalman
filter which incorporates all the weighted or combined mea-
surements to obtain a single state estimation. According
to (Gan and Harris, 2001), performance of measurement
fusion techique is better than state vector fusion. But state
fusion technique is flexible and computationally efficient.

This paper, combines the advantages of both Method I
and Method II. Here a modification is proposed to the
traditional cascade Kalman filter. This Modified Cascade
Kalman Filter (MCKF) algorithm has better estimation
performance as it is a single Kalman filter similar to
measurement fusion but it restores the flexibility and com-
putational efficiency of state vector fusion. The derivation
of MCKF is dealt in detail in the section 2. A numerical ex-
ample is presented in section 3, where MCKF is employed
for the attitude estimation of MAV. The sensors used for
the fusion algorithm are accelerometer and magnetometer.
In MAV, the mounting of the autopilot in close proximity
to motor degrades the accelerometer data. This creates
a neccesity for fusion of accelerometer data with magne-
tometer data. In section 4 estimation of roll and pitch in
the 6 DOF simulation model of the MAV developed in
MATLAB/SIMULINK is given. In section 5, experimental
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results are presented for the constant roll rate given to the
rate table of a simulator with the MAV.

2. MODIFIED CASCADE KALMAN FILTER
2.1 Background

One of the widely used methodology for the fusion of
data from multisensors is Cascade Kalman Filter. In this
type of filter the estimated states from the first stage acts
as the initialized states for the second stage. Here the
complete set of Kalman filter equations are to be executed
in every stage for each sensor updation. This becomes a
computational burden for the on-board processor.

In the proposed MCKF prediction step and error co-
variance calculation are performed once; only the mea-
surement update is executed in cascade fashion. That is,
MCKF is not n-number of Kalman filters connected in
cascade but it is a single Kalman filter with measure-
ment updation from different sensors in cascade fashion.In
MCKEF the method of measurement updation is modified
to fit in proposed framework while other structures of
conventional EKF are retained.

The measurement updation for two sensor based MCKF
is as follows :

Xii_;( = Xl_K +K1(Y1K - OlKXl_K) (1)
X2+K :XIJFK +K2(Y2K _CQKXlJrK) (2)

Here, X 1, : the array of estimated states from the propa-
gation at the instant of availability of the measurement
from sensor 1. )A(fK and X;K : the array of estimated
states after the measurement updation from sensor 1 ans
2 respectively. K1 and Ky are the Kalman filter gains for
the measurement updation 1 and 2 respectively. Y;, and
Y5, : sensor measurements avaliable at the Kth instant.
C1, and Cy, are output matrices of measurements 1 and
2 respectively.

The block diagram of MCKF is presented in the Figure
1. For the type of measurement updation proposed, the
Kalman filter gains and error covariance matrix equations
are to be derived, which is discussed in the following
subsections.

2.2 Error Covariance matriz of (MCKF)

Consider a system,
X = f(X,U,W,1)
Discrete measurement model :

Yie = hie(Xi,vip)
Yo, = ho (XK, voy)
Assumption : The process and sensor noises are zero mean

uncorrelated Gaussian white noises and

E[I/ljllle] = R1§ij
E[VQiVQjT] = Rg(sij
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Fig. 1. Block diagram of the MCKF.
The error in estimation is given by
Xt =Xk - X5 (4)

e =T
Error covariance matrix Pk " is defined as the E[X X+ ).
To derive the equation for P+, X 1+ is calculated as follows

X=X — (X + Kao(Yo, — Co X)) (5)

X =Xg — [Xp, + K1 (Vi — Crc X7,)
+ Ky(Ya, — Co, X1 )] (6)

Xt = (Xx — X7.) = Ky (Crc Xk +v1y — Crc X1,)
— Ko(Cop Xk + 12, — Co X172 ) (7)

Xi=(-KC,)(Xk — X,) — K,

— K30y, (XK — X{ ) — Kova,e  (8)
substituting,
(Xx = X)) = (I = KOy, )(Xie — X7) — Ky (9)
in the previous equation,
X; = (I — KQCQK)(I — chlK)(XK — XI_K) — K1V1K
7K202KK11/1K 7K2V2K (].O)

P = (I — KyCo, )(I — K1Cy, ) Pi™
(I — KyCo, ) (I — KOy )"
+ [K2Cay K1) R1[K2Ca, K1 )T

+ KR KT+ KRy KT (11)
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