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Abstract: In this paper, we consider a fractional order stochastic differential system with
impulsive conditions. The necessary and sufficient conditions for the controllability of associated
linear stochastic system is studied by using the controllability Grammian matrix defined by
Mittag-Leffler function. The sufficient condition for controllability of the proposed nonlinear
system is proved by using Banach fixed point theorem. An example is provided to illustrate the
theory using the numerical integration by Haar wavelet approximation method.
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1. INTRODUCTION

Many dynamic processes are characterized by the fact
that at certain moments of time they experience sudden
changes of state. These changes may seem instantaneous
because the durations of these changes are negligible in
comparison with the duration of the whole process. There-
fore, it is natural to assume that these changes are in the
form of impulses. Dynamic systems subject to impulsive
effects are defined as impulsive systems. It is known, for ex-
ample, that many biological phenomena involving thresh-
olds, bursting rhythm models in medicine and biology,
optimal control models in economics, do exhibit impul-
sive effects, see Lakmikantham (1998), and Karthikeyan
(2011).

An increasing interest in issues related to fractional dy-
namical systems oriented towards the field of control
theory can be seen from the literature, for instance,
see Nadeem (2014). Stochastic differential equations have
many applications in economics, ecology and finance. In
recent years, the controllability problems for stochastic
differential equations have become a field of increasing
interest, (see Karthikeyan (2009) and references therein).
The extensions of deterministic controllability concepts to
stochastic control fractional systems have been discussed
only in a limited number of publications, see Nadeem
(2014). The question of why would we need impulsive
control may arise. In some cases, impulsive controls are
preferred over continuous controls.The important consid-
eration is that impulsive control could be more practical
and cheaper than continuous control. For example, in
spacecraft formation control problems, see Lakmikantham
(1998).

In this paper, we consider the controllability of nonlinear
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fractional stochastic differential systems with impulses as
follows:

“D(t) = Ax(t )+GU( )+ f(t,2(t))

+o(t, z(t)) d() t=[to, T)\ {t1,t2,....,tp}
Ax(ty) = x(ty) — a(ty,) = In(z(te), k= 1,2, p,
’l}(to):’l}o,

(1)
where “D%z(t) denotes an a order Caputo’s fractional
derivative of x(¢),0 < o < 1, A and G are the known
constant matrices and satisfy A € R"*"™ and G € R™"*"™,
x € R™ is the state variable, u € R™ is the control input.
w(t) is a given [— dimensional Wiener process with the
filtration F; generated by w(s),0 < s <t and f : [to,T] X

R®™ — R™ o : [to,T] x R® — R"*! are appropriate
continuous functions. I, : R® — R" is continuous for
k=1,2,...,p, and

z(tT) = lim z(t h), =x(t;)= lim x(tx —h
(1) = lim sl +h), alty) = lim a(t— )
represent the right and left limits of x(¢) at ¢t = ¢ and the
discontinuous points

t0<t1<t2<-~~<tp<tp+1:T

and x(ty) = «(t,) which implies that the solution of
system (1) is left continuous at t.

This article is organized as follows: In section 2, provides
some preliminaries of fractional calculus, Laplace trans-
form and the solution of the linear fractional stochastic
system. Section 3 gives the existence and uniqueness for
the solution of the linear and nonlinear impulsive frac-
tional stochastic system. Finally we provide two examples
to demonstrate the effectiveness of our method.

2. PRELIMINARIES
In this section, we first recall some basic definitions of

fractional calculus, which are useful for this work. Through
out this paper, let Banach space, PC([tg,T],R™) = {z :
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[to,T] — R"jxz € C((tk,tr+1]),k = 0,1,...,p,} and
there exist z(t;) and z(t)), for k = 1,2,...,p, with
x(t,) = x(tx) with norm ||z||pc = sup{|z(t)|| : t €
J}. Let (2, F,P) be a complete probability space with
a filtration {F;};>o satisfying the usual condition (i.e.
right continuous and Fy containing all P—null sets).
Let a > 0, with n — 1 < a < n. Let R™ be the
m—dimensional Euclidean space. Let C denote the Banach
space PC([to,T], L2(Q2, F,P)) (see Karthikeyan (2009),
Guendouzi (2013) for more details.)

Definition 1. (Caputo fractional derivative) Let f €
Clto, 00). For t € [tg, 00), the Caputo fractional derivative
CDf(t) of order « is defined by

C Nnao _ 1
D f(t) _F(n—a)

. /t;(t _ gyn-a-t [Z;ﬂs)} ds,

where n is positive integer such that n — 1 < a < n.
Particularly, when 0 < a < 1, it holds

1 ' —a gt
F(la)/to(t_s) f(s)ds.

Definition 2. (Mittag-Leffler function) For z € C, the two-
parameter Mittage Leffler function is defined as

“Def(t) =

(oo}
z
E, = _ 0, 0).
8(2) ];) fart g @>08>0
For example,
Eyq1(z) = Eo(2), here f=1,

t
/ Ea(2%)dz = tEa 2(t),
0

Laplace transform of Mittag-Lefler function is
ak+p—1 a(k o ¥ —styaktp—1 gk a
Lt EY) (£at®); s] = /O etk ) (Lat)dt

klse—B 1
- e (Re) >l
(2)

where Re(s) denotes the real parts of s. In addition,
Laplace transform of ¢~ is

Lit“ Y8 =T(a)s™, a>0.

2.1 Linear fractional stochastic system

Let us consider the linear fractional stochastic differential
equation of the form

CDal‘(t) = Al‘(t) + U(t)dL(t) =+ f(t),t S [to,T] (3)

dt
.’E(to) = Xy,
where 0 < a < 1, A is n x n matrix, o : [tg, T] — R"*!

is appropriate function and f : [to, 7] — R™ is continuous
function.

Lemma 3. The solution z(t) of the system (3) can be
represented as

z(t) =z(to) + / (t— s)aflEma(A(t —5)%)

to

X [Aas(to) + (/Ona(e)dw(e)) + f(s)} ds,t €0, 7).

Proof. Applying the idea used in [Zhou (2013)], we have
the integral equation of the system (3),

1 ! a—1
z(t) = x(to) + (o) /to (t—s)

X [Ax(s) + U(S)dzgis) + f(s)} ds,
/tot(t =gt s + 005 4 00 as
=t*1o [Ax(t) + a(t)dtg—it) + f(t)} ,

where o is the convolution. The solution equation can be

written as
x(t) = xz(to) + @to‘_l o |:Ax(t) + U(t)T + f(t):| :

Applying the Laplace transform on both sides of above
equation,

1 dw(t)

1
(o)
+L {a(t)dw(t) + f(t),s}
dt
where X (s) is the Laplace transform of z(t), we have
X (s) =(sT — A) " s“Lx(to); ]

+(s*T— A)7'L [o(t)dw(t) + f(t);s}

X (s) = L[z(to); s] + D(a)s™@ - AX(s)

dt

Inserting the formula for laplace transform for the Mittag-
Leffler function (2), we have
X(s) = Llz(to); s] + (t°7 ! Ea,a(A(tY))
dw(t
L [a(t)fli) + £(8); s}

Applying the inverse Laplace transform on both sides (see
Guendouzi (2013)) and convolution, we have

x(t) =x(to) + / (t— s)‘klEa,a(A(t —5)Y)

to
n
X [Ax(to) + (/ a(&)dw(@)) + f(s)} ds,t € [to, T
to
Thus, the proof is completed. O

3. CONTROLLABILITY CRITERIA FOR SYSTEM

In this section, we establish the sufficient and necessary
conditions of controllability criteria for impulsive system.

8.1 Linear impulsive fractional stochastic system

Consider the linear impulsive fractional stochastic differ-
ential equation is of the form as:

CDex(t) = Ax(t) + Gu(t) + U(t)M,

x(to)zxo, t= [tO,T]\{tl,tQ’...7tp},
Ax(ty) = a(t}) - a(ty) = Iu(e(t), k=1,2,....p,

(4)
where 0 < a < 1.
Definition 4. (Karthikeyan (2009)) The stochastic impul-
sive system (4) is said to be controllable on [tg, T] if, for
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