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Abstract: Stability prediction of machining operations is often not reliable due to the inaccurate
mechanical modeling. A major source of this inaccuracy is the uncertainties in the dynamic
parameters of the machining center at different spindle speeds. The measured frequency response
functions of the tool are usually loaded by noise and identification of the operational modal
behavior based on static measurements is not straightforward. In this paper, the effect of small
changes of the frequency response function on the stability of turning processes is analyzed using
the semi-discretization method and the single-frequency solution.
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1. INTRODUCTION

Material removal by means of cutting is one of the most
important components of manufacturing systems. Machine
tool centers nowadays are capable of spindle speeds ex-
ceeding 50 000 rpm while simultaneously delivering tens of
kilowatts of power to the cutting zone. Still, these features
are often not utilized due to limitation caused by machine
tool chatter. Prediction of the stability of a machining
operation is therefore highly important for manufacturing
systems.

In the 1960s, after the extensive work of Tobias (1965),
Tlusty and Spacek (1954), the so-called regenerative effect
became the most commonly accepted explanation for
machine tool chatter. The phenomenon can be described
by involving time delay in the model equations. The
vibrations of the tool are copied onto the surface of
the workpiece, which modifies the chip thickness and
induces variation in the cutting-force acting on the tool
one revolution later. This phenomenon can be described
by delay-differential equations (DDEs).

Stability properties of the machining processes are de-
picted by the so-called stability lobe diagrams, which plot
the maximum stable depths of cut versus the spindle
speed. These diagrams provide a guide to the machinist
to select the optimal technological parameters in order to
achieve maximum material removal rate without chatter.

There are several limitations in the modeling of machine
tool chatter. Most models in the literature consider linear
systems, although nonlinear effects may also influence the
stability properties (Dombovari et al., 2008). According to
Munoa et al. (2013), the number of modes to be modeled
is also an important factor. The approximation of the
measured frequency response function (FRF) plays also
an important role (Zhang et al., 2012). In this paper,
parameter sensitivity of the stability chart is analyzed for

different modeling inaccuracies, such as mode omission or
mode merging.

The structure of the article is as follows. In Section 2,
the formulation of the frequency response function matrix
in case of non-proportional damping is introduced. The
stability analysis both in time domain (using the modal
representation) and in frequency domain (using directly
the measured FRF) are presented in Section 3. This pro-
vides two efficient ways to construct the stability charts.
Some typical fitting inaccuracies are discussed in Section 5.
First, the effect of neglected and merged modes is analyzed
based on a two-degrees-of-freedom model. Then, the sen-
sitivity of a stable island with respect to modal parameter
inaccuracies are demonstrated. Finally, a case study is
presented for different degrees-of-freedom approximation
of a measured FRF'. The results are concluded in Section 6.

2. DETERMINATION OF MODAL PARAMETERS

The modal behavior of the machine is usually determined
from impact or shaking tests. Let us have the matrix
differential equation of motion for a multiple-degrees-of-
freedom system in the form

Mx(t) + Cx(¢t) + Kx(t) = £(¢), (1)
where x(t) € R™ is the general coordinate vector, M €
R™ ™ is the mass matrix, C € R"*™ is the damping
matrix, K € R™*" is the stiffness matrix, f(¢t) € R”
is the excitation vector and n is the number of degrees
of freedom. Matrices M, C, and K usually cannot be
determined, but the modal parameters of the system
can be approximated by different methods. Therefore the
equations are defined in the modal space.

The system is proportionally damped if the damping
matrix can be written as

C = OLMM + OZKK, (2)
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where ayr € R and ax € R are the proportional factors
(Ewins, 2000). If the damping matrix can be represented
in such a way, it guarantees that the mode shapes are real
valued and identical to the eigenvectors of the undamped
system. It is known that if a system is proportionally
damped, then the frequency response function matrix
H(w) can be defined as

L Xiw) & bikPik
Hij(w) = Fj(w) - Z —w? + QCkwn,JkWi + w?l,k)’ ¥

where ij represents the rows and columns of matrix H(w)
respectively, X;(w) = F(x;(t)), F;(w) = Z(fi(t)), and F
is the Fourier transform, furthermore wy j is the natural
angular frequency, (i is the damping factor, i = v/—1 is
the complex unit, ¢;p¢;r = 1/ms, and my, is the the modal
mass.

A system is called non-proportionally damped if (2) does
not hold. In this case, the frequency response functions
cannot be expressed according to (3), furthermore the
mode shapes are complex and not identical to the eigen-
vectors of the undamped system. The equation of motion
can be written in a first-order form

Av(t)+Bv(t) = £, (1), (4)
where the state vector is v(t) = (x(t) x(¢))* and

A= (@) 2= (5 %) wo- (V). o

furthermore A = AT and B = BT (Ewins, 2000; Dom-
bovari et al., 2012). The homogeneous part states an
eigenvalue-eigenvector problem in the form

(AX+B)U =0, (6)
where U € C?" is the unnormalized (right) eigenvector.

The eigenvalues can be determined from the frequency
equation

det(A\ + B) =0, (7)
where A\, = —Cpwn kp + /1 — C,?wnyki. The eigenvalues and
eigenvectors form complex conjugate pairs if ( < 1.

Equation (4) can be transformed into the 2n-dimensional
modal space by the transformation q(t) = ¥v(t), where
q(t) € C?" is the modal coordinate vector and ¥ &
C?"*2" i the modal transformation matrix. If the complex
eigenvectors Uy are normalized according to the criteria

U

Pp = ———, (3)
\/ ULAU;,
then the modal transformation matrix can be written as

U= (¢ Y1 - Py Pn). 9)
Since $TAW = I and $TBY¥ = —diag(\;) = —A, the
equation finally forms

alt) — Aa(t) = ¥TE (). (10)
From the Fourier transform of (10), the elements of the
FRF matrix H(w) consistently to (3) can be given as

CXi(w) - ((Yatie | Vit
Hij(w) = Fj(w) ]; (wi— i\k * wi— i\k> - 1y

Equations (11) and (3) are identical if the damping is
proportional, then Re{v¢;r¢;x} = 0. Using curve-fitting
techniques, the modal parameters wy, 1, Cx, ¥ir, and 9 can
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Fig. 1. Surface regeneration in an orthogonal process.

be fitted on the measured FRF. A well-known technique is
the rational fraction polynomial method of Richardson and
Formenti (1982), which can efficiently be used for high-
degrees-of-freedom approximations, but there are many
other linear or nonlinear fitting algorithms. In this paper, a
nonlinear least squares method was used which is suitable
for the fit of low-degrees-of-freedom models.

3. DYNAMICAL MODEL OF TURNING

The dynamical model of an orthogonal turning operation
considering multiple modes in direction x is presented
in Fig. 1. Note that vibrations in the y-direction does
not affect the linear stability properties (Insperger et al.,
2007). The cutting-force can be given as
F,(t) = K,whi(t), (12)
where K, is the cutting-force coefficient in the tangential
direction z, w is the depth of cut, A(t) is the instantaneous
chip thickness and ¢ is the cutting-force exponent. Due to
the vibrations of the tool, the chip thickness is determined
by the feed motion, the current tool position and the
previous position of the tool one revolution ago. For
constant spindle speeds, the time delay can be given
explicitly as 7 = 60/€2, where ) is the workpiece revolution
given in rpm. The instantaneous chip thickness can be
calculated as
h(t) =ver +21(t — 7) — 21 (), (13)
where vt is the feed velocity. Therefore the excitation
vector f(t) can be given as
Kyw (ver + 21 (t — 1) — 21 (2))?
0
f(t) = (14)
0
The stability of the system can be analyzed by considering
only the linearized system. The general solution can be
given as x(t) = x, + £(¢), where x,, is related to the static
deformation and £(t) is a small perturbation around the
equilibrium x = x;,. After the linearization, the variational
system is given by

ME(t) + CE(t) + KE&(t) = k (§(t —7) —&(t))

and

(15)
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