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Abstract: We consider a general model for a network of all-to-all coupled oscillators with time
delayed connections. We reduce the system of delay differential equations to a phase model where
the time delay enters as a phase shift. By analyzing the phase model, we study the existence
and stability of cluster solutions. These are solutions where the oscillators divide into groups;
oscillators within a group are synchronized, while oscillators in different groups are phase-locked
with a fixed phase difference. We show that the time delay can lead to the multistability between
different cluster states. Analytical results are compared with numerical studies of the full system
of delay differential equations.
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1. INTRODUCTION

Many biological and physical systems can be studied using
coupled oscillator models, for example neural networks
(Hansel et al., 1993), laser arrays (Winful and Wang,
1988), flashing of fireflies (Mirollo and Strogatz, 1990),
and movement of a slime mold (Takamatsu et al., 2000).
A fundamental question about these systems is whether
the elements will phase-lock, i.e., oscillate with some
fixed phase difference, and how the physical parameters
affect the answer to this question. Clustering is a type of
phase locking behavior where the oscillators in a network
separate into subgroups. Each subgroup consists of fully
synchronized oscillators, and different subgroups oscillate
with a fixed phase difference. Symmetric clustering refers
to the situation when all the subgroups are the same size
while non-symmetric clustering means the subgroups have
different sizes.

Phase models have been used to study the behaviour of
networks of coupled oscillators beginning with the work of
Kuramoto (1984). While they have been used to study
a variety of phenomena, especially in neural networks
(Ermentrout and Kopell, 1984, 1991; Ermentrout, 1996;
Galán, 2009; Hansel et al., 1993), Okuda (1993) was the
first to study clustering behaviour using this tool. Con-
sidering a phase model for a network of arbitrary size
with all-to-all coupling, Okuda (1993) established general
criteral for the stability of all possible symmetric cluster
solutions as well as some non-symmetric cluster solutions.
He showed that these results gave a good prediction of
stability for a variety of model networks. Recently, similar
results have been obtained for networks with nearest-
neighbour coupling (Miller et al., 2015). Phase model
analysis has been extensively used to study phase-locking
in pairs of model (Kopell and Ermentrout, 2002; Saraga
et al., 2006) and experimental (Mancilla et al., 2007)

neurons. More recently it has been used to study clus-
tering in model (Kilpatrick and Ermentrout, 2011) and
experimental (Galán et al., 2006) neural networks.

In many systems there are time delays in the connections
between the oscillators due to the time for a signal to prop-
agate from one element to the other. In neural networks
there is a delay due to conduction of electrical activity
along an axon or a dendrite and due to processing time at
the synapse(Crook et al., 1997; Kopell and Ermentrout,
2002). While much work has been devoted to the study of
the effect of time delays in neural networks, the majority
of this work has focussed on systems where the neurons
are excitatory not oscillatory, (e.g., Burić et al. (2005);
Dahlem et al. (2009); Panchuk et al. (2013)), pairs of
oscillators (e.g., Campbell and Kobelevskiy (2012); Kopell
and Ermentrout (2002); Schuster and Wagner (1989)) or
synchronization (e.g., Crook et al. (1997); Orosz (2012,
2014a)). We note that extensive work has been done on
networks of Stuart-Landau oscillators with delayed cou-
pling (e.g., Choe et al. (2010); Dahms et al. (2012)) where
the model for the individual oscillators is the normal
form for a Hopf bifurcation and thus the system is often
amenable to direct analysis. Recent work has developed
new approaches to determine the Floquet multipliers, and
hence stability, of cluster solutions in delayed neural os-
cillator networks Orosz (2014a,b). There is also a vast
literature on time delays in artificial neural networks which
we do not attempt to cite here.

In this paper, we investigate the effect of time delays in
the coupling on the clustering behavior of networks of all-
to-all coupled identical oscillators, using the phase model
approach. The advantage of this approach over Floquet
analysis is that one can often draw conclusions which are
independent of the particular oscillator model and the size
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of the network. The disadvantage is that phase model
analysis requires weak coupling.

The plan for our article is as follows. In section 2, we
review how to reduce the differential equation model for
our network to a phase model. In section 3, we analyze the
phase model to investigate the existence and stability of
symmetric cluster states and draw some conclusions which
depend only on the connectivity structure of the network.
In section 4, we apply our results to a specific example:
a network of all-to-all coupled Morris-Lecar oscillators
with delayed synaptic coupling. A comparison of numerical
results for the full model and the phase model analysis is
given. In section 5, we discuss some biological implications
of our results and directions for further investigation.

2. REDUCTION TO PHASE MODEL

In this section, we review how to reduce a general model for
a network of all-to-all coupled oscillators with time-delayed
connections to a phase model. We begin by considering the
model for a single oscillator. This is a system of ordinary
differential equations

dX

dt
= F (X(t)), (1)

which admits an exponentially asymptotically stable pe-
riodic orbit, denoted by X̂(t), with period T = 2π

Ω . Lin-

earizing the model (1) about the periodic solution X̂(t) we
obtain

dX

dt
= DF (X̂(t))X, (2)

and its adjoint system

dZ

dt
= −[DF (X̂(t))]TZ. (3)

Here DF (X̂(t)) represents the Jacobian matrix of F with

respect to X, evaluated at X̂(t). Denote by Z = Ẑ(t)
the unique periodic solution of the adjoint system (3)
satisfying the normalization condition:

1

T

∫ T

0

Ẑ(t) · F (X̂(t))dt = 1.

Now, consider the following network of identical oscillators
with all-to-all, time-delayed coupling

dXi

dt
= F (Xi(t))+ε

N∑
j=1,j �=i

G(Xi(t), Xj(t−τ)), i = 1, · · · , N.

(4)
Here G describes the coupling behavior and ε is referred
to as the coupling strength. When ε is sufficiently small,
we can apply the theory of weakly coupled oscillators to
reduce (4) to a phase model (Ermentrout and Terman,
2010; Hoppensteadt and Izhikevich, 1997). While there are
no general results on how small ε should be, it can been
quantified for particular models. See section 4.2.

How the time delay enters into the phase model depends on
the size of the delay relative to other time constants in the
model. It has been shown (Ermentrout, 1994; Izhikevich,
1998; Kopell and Ermentrout, 2002) that if the delay is

such that Ωτ = O(1) with respect to the coupling strength
ε then the appropriate model is

dφi

dt
= Ω+ ε

N∑
j=1,j �=i

H(φj − φi − η), i = 1, 2, · · · , N, (5)

where η = Ωτ . That is, the delay enters as a phase lag.
The interaction function H is a 2π-periodic function which
satisfies

H(φ) =
1

T

∫ T

0

Ẑ(s)G(X̂(s+ φ))ds.

with Ẑ, X̂ as defined above.

We have focussed on the case with no self-coupling, which
leads to the j �= i condition in the sum above. However,
the model (5) is included in the more general model

dφi

dt
= Ω̃ + ε

N∑
j=1

H(φj − φi − η), i = 1, 2, · · · , N. (6)

For the model with no self-coupling, Ω̃ = Ω − H(−η),

while for the model with self-coupling Ω̃ = Ω. We will
work with (6) in the following. Note that this model has
SN symmetry, that is, one can make any permutation of
the indices of phases and the equations are left unchanged.

Finally, we note that when the delay is long enough
(η ∼ O(1/ε)), the delay enters into the model not as phase
shift, but in the argument of the oscillators, φj(t)−φi(t−τ)
(Izhikevich, 1998). This type of model has been the subject
of several studies (Kim et al., 1997; Niebur et al., 1991;
Schuster and Wagner, 1989; Sethia et al., 2011; Yeung and
Strogatz, 1999).

2.1 Phase difference model

Noting that the right hand side of (6) depends only on
the differences between the phases, we define the variables
θi = φi − φi+1, i = 1, 2, . . . , N − 1. Assuming ε > 0 and
introducing the slow time u = εt, then gives rise to the
following equations

dθi
du

=

N∑
j=1

(
H(φj − φi − η)−H(φj − φi+1 − η)

)
. (7)

Now when j < i, we have

φj − φi = θj + θj+1 + · · ·+ θi−1,

while, when j > i, we have

φj − φi =−(θi + θi+1 + · · ·+ θj−1).

Thus, we can write (7) in the following form

dθi
du

=
i−1∑
j=1

H(

i−1∑
k=j

θk − η) +

N−1∑
j=i

H(−
j∑

k=i

θk − η)

−
i∑

j=1

H(

i∑
k=j

θk − η)−
N−1∑
j=i+1

H(−
j∑

k=i+1

θk − η)

(8)

The phase difference model (8) reduces the dimension of
the model from N to N − 1. However, it also has less
symmetry than the phase model system. We will find that
both models are useful in our study of cluster states.
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